IMPACTS OF PLASTIC POLLUTION IN THE OCEANS ON MARINE SPECIES, BIODIVERSITY AND ECOSYSTEMS

SUMMARY OF A STUDY FOR WWF BY

ALFRED-WEGENER-INSTITUT
HELMHOLTZ ZENTRUM FÜR POLAR- UND MEERESFORSCHUNG
A new report commissioned by WWF provides the most comprehensive account to date of the extent to which plastic pollution is affecting the global ocean, the impacts it’s having on marine species and ecosystems, and how these trends are likely to develop in future. The report by researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) reveals a serious and rapidly worsening situation that demands immediate and concerted international action:

- Today almost every species group in the ocean has encountered plastic pollution, with scientists observing negative effects in almost 90% of assessed species.
- Not only has plastic pollution entered the marine food web, it is significantly affecting the productivity of some of the world’s most important marine ecosystems like coral reefs and mangroves.
- Several key global regions – including the Mediterranean, the East China and Yellow Seas and Arctic sea ice – have already exceeded plastic pollution thresholds beyond which significant ecological risks can occur, and several more regions are expected to follow suit in the coming years.
- If all plastic pollution inputs stopped today, marine microplastic levels would still more than double by 2050 – and some scenarios project a 50-fold increase by 2100.

WWF calls the world governments to urgently negotiate and adopt a global treaty to tackle this pervasive and ever-growing threat to life in our oceans.
INTRODUCTION: A PLANETARY CRISIS

Plastic pollution is everywhere in the global ocean, and levels have grown exponentially

The UN calls it a ‘planetary crisis’. From the poles to the remotest islands, from the surface of the sea to the deepest ocean trench, the marine plastic pollution problem has grown exponentially, plastic pollution is now ubiquitous and is projected to increase even if current corporate and government commitments are met.¹ Global and systemic actions are needed urgently in response.

Plastic pollution is a relatively new threat. Plastic only began to be widely used after World War II, but already the mass of all plastic ever produced is twice as high as the overall mass of all terrestrial and marine animals combined.² Production has rocketed in the last two decades, with as much plastic being produced between 2003 and 2016 as in all the preceding years combined.

By 2015, 60% of all plastic ever produced had already become waste,³ a significant part of which has ended up in the ocean. Estimates vary widely, but it’s thought that between 86-250 million metric tonnes (MMT) of plastic have accumulated in the oceans by now,⁴ at a continuously increasing rate: in 2010, 4.8-12.7 MMT of plastic waste pollution were estimated to enter the ocean from land,⁵ while a more recent study suggests that 19-23 MMT entered our waterways in 2016.⁶

Oceanic plastic pollution is not evenly distributed. Planetary hotspots include the five large ocean gyre systems (where the ‘garbage patches’ accumulate floating plastic debris), coastal and ocean areas near major emission points such as the deltas of large rivers that run through urban centres, coral reefs, mangroves, and the deep seafloor, especially canyons.

Where is all this plastic in the world’s oceans coming from? Many of the sources are known, but not all of them. The rise of single-use items is a major factor: in 2015, half of all plastic waste was from packaging alone,⁷ while according to a 2018 estimate, single-use plastics account for 60-95% of global marine plastic pollution.⁸ Land-based sources near coastlines and rivers further inland contribute the large majority of marine plastic pollution: a recent analysis estimated that Europe, for example, releases 307-925 million litter items into the ocean annually, of which 82% are plastic.⁹ But there are also significant marine-based sources, with one study estimating that at least 22% of marine litter comes from fisheries.¹⁰ The air, too, is a vector for plastic pollution: wear of vehicle tyres and brakes are a major source of microplastic emissions,¹¹ as is wind abrasion from plastic-coated surfaces, waste processing, roads and agriculture.

THE RISE OF MICROPLASTICS

As plastics continue to break down in the ocean, the threats they pose multiply

Due to the challenges of collecting ocean plastic and the persistent nature of plastic in the environment,¹² once plastic is in the ocean it’s almost impossible to remove it. Moreover, once it has entered the ocean, it continues to break down: macroplastics become microplastics, and microplastics become nanoplastics, making recovery even more unlikely. Even if all plastic pollution inputs into the ocean were to stop today, this process of degradation means the mass of microplastics in oceans and beaches will more than double between 2020 and 2050.¹³

And there’s little evidence of plastic pollution inputs stopping or even slowing in the near future. While ‘business-as-usual’ projections vary a great deal, they all predict substantial further growth in waste output. The plastics industry has invested US$180 billion into new factories since 2010.¹⁴

Plastic production is expected to more than double by 2040 and plastic pollution in the ocean is expected to triple.¹⁵ This could lead to a four-fold increase in oceanic macroplastic concentrations by 2050,¹⁶ and an alarming 50-fold increase in oceanic microplastics by 2100.¹⁷ Microplastic concentrations of 1.21 x 10³ items m⁻³ have been proposed as a threshold level, above which significant ecological risks occur.¹⁸ This threshold has already been exceeded in certain pollution hotspots including the Mediterranean, the East China Sea, the Yellow Sea²⁰ and in Arctic sea ice¹⁹. Ecological risks of microplastic pollution at the global ocean surface are expected to spread considerably by the end of the 21st century:²¹ even the most optimistic scenarios see further significant increases, while a worst-case scenario suggests that dangerous pollution thresholds will be exceeded across an ocean area more than twice the size of Greenland.

Figure 1: Nano-plastics particles are ten times smaller than fine clay.

Plastic classifications

While different definitions circulate, usually the following size categories have been used based on the longest length of the item.

<table>
<thead>
<tr>
<th>Size</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5 mm</td>
<td>Macroplastics</td>
</tr>
<tr>
<td>5 mm - 0.1 µm</td>
<td>Microplastics</td>
</tr>
<tr>
<td><0.1 µm</td>
<td>Nanoplastics</td>
</tr>
</tbody>
</table>

Figure 2: Plastic and waste pollution in the eastern Caribbean between the islands of Roatan and Cayos Cochinos in front of the coast of Honduras.

Image © Caroline Power
INTERACTIONS WITH NATURE

Plastic pollution harms marine life through entanglement, ingestion, smothering and chemical leaching.

Plastic pollution is now found everywhere in the ocean, and almost every marine species is likely to have encountered it. According to a conservative assessment of current research, a total of 2,141 species have so far been found to encounter plastic pollution in their natural environments.

The large majority of these interactions were related to ingestion, entanglement or smothering, with a further 738 species observed to colonize plastic items, enabling the spread of these species to new areas. Studies – carried out both in the laboratory and in the field – have also researched interactions with plastics under experimental conditions for 902 species. These included microplastic ingestion studies with different microplastic levels, and the deployment of ghost nets to quantify entanglements. While an assessment on how species come in contact with plastic was done for 902 species, some studies went further and not only tested interactions but also investigated negative effects. Some of these studies assessed effects such as injury or death, restricted motion, altered food uptake, growth, immune response, reproduction and cell function. Observable effects were studied for 297 species, and of these 88% were considered to be adversely affected. While this percentage comes only from a limited sample of species and hence cannot be more broadly applied, a strong tendency is nevertheless clear: plastics have negative effects on most marine life.

The main negative effects of plastics are:
- **Entanglement** – Items like ropes, nets, traps and monofilament lines from abandoned, lost or discarded fishing gear wrap themselves around marine animals causing strangulation, wounds, restricted movement and death. Birds also use marine debris for their nests, which can entrap parents and hatchlings. Fishing lines entangled 65% of coral colonies in Oahu, Hawaii, and 80% of these colonies were entirely or partially dead. Even in the remote Arctic deep sea, up to 20% of sponge colonies have been entangled with plastic, and entanglements increased over time.
- **Ingestion** – Marine animals of all kinds – from apex predators down to the plankton at the base of the food chain – ingest plastic. This can cause serious harm to the animals, affecting food uptake by creating a false sense of satiation or blockages in digestive systems, as well as leading to internal injuries. Laboratory experiments have shown reduced growth in fish when their food is contaminated by high volumes of microplastics, while at the other extreme a single plastic drinking straw in its digestive system likely caused the death of a whale shark in Thailand. Plastic ingestion in seabirds is global, pervasive, and increasing. It has been estimated that up to 90% of all seabirds and 52% of all sea turtle individuals nowadays ingest plastics. Many emaciated whales and dolphins found stranded are also found to have ingested macroplastics. Some studies have shown altered or decreased food uptake, and negative impacts on growth, immune response, fertility and reproduction as well as altered cell functions and behaviours in the impacted species; with levels of harm directly related to exposure concentrations.
- **Smothering** – Plastic pollution deprives corals, sponges and bottom-dwelling animals of light, food and oxygen, making sediment oxygen-deficient and reducing the numbers of organisms in the sediment. This can negatively affect ecosystems and give pathogens a foothold, which can have detrimental effects on marine life. Smothering is particularly harmful in coral reefs and mangroves.
- **Chemical interactions** – Not all the ingredients in plastics are harmless, but many of them are and can leach from plastics into the marine environment. The smallest plastic particles can cross into the body cells and some of them can even reach the brains of marine animals.

Some of the most concerning chemical pollutants found in plastic can include:
- **Endocrine disruptors** – these interfere with hormones, disrupting breeding, development and behaviour in many kinds of marine life. Even some plastics that are labelled as food-safe can be highly toxic to aquatic animals and people alike.
- **Persistent organic pollutants** – these long-lasting substances, such as polychlorinated biphenyls (PCBs), affect organisms and environmental health. Because they don’t degrade, they can be transported over long distances by wind and water, eliciting long-lasting impacts far from their origin.
PLASTIC POLLUTION is now present in large amounts in all the oceans.

Figure 5: Pathways of plastics into the ocean

Sources
Consequences

About 2,150 marine species encountered plastic.

© Anita Drbohlav/WWF; own illustration according to AWI
POLLOUTING THE FOOD CHAIN

Ingested plastic can move right up the marine food chain – and is now found in human diets, too.

When marine animals ingest plastic, fields and laboratory studies have demonstrated that those plastics – and their associated chemical pollutants – can pass further up the marine food chain.

Studies have confirmed the existence of microplastics in the water column and the incorporation of these particles into sinking aggregates. These sinking particles are consumed partly or completely by plankton and other tiny organisms, which form the base of marine food webs. Disruptions in the efficiency of biological processes can negatively affect how they function.

Despite a recent surge of research on their effects on organisms, surprisingly little is currently known about the potential impacts of plastics on human health – but it’s safe to say people are ingesting and ingesting them. Ingestion of microplastics by blue mussels, for example, has been demonstrated through most of their natural and introduced range and the same is true for oysters. Since both are consumed whole by humans, there’s no way of avoiding the plastics they contain. Similarly, four out of 20 seabird species examined organisms. The data were extracted from 180 studies on microplastic ingestion (LITTERBASE). The blue thumbnails above the bars show the total number of studies from which data were analysed for this figure.

Despite recent increases in microplastic emissions, the data suggest that plastic pollution is hitting coral reefs and mangroves particularly hard.

Plastic pollution is now found everywhere in the global ocean, certain key marine and coastal ecosystems are particularly at risk as they are already facing multiple threats in addition to growing levels of plastic pollution. These ecosystems – coral reefs and mangroves – are notable examples – provide vital services to people as well as marine life, so humans are directly affected when plastic negatively affects how they function.

The scale of the threat plastic poses to coral reefs – already in crisis due to global warming – is alarming. In the Asian Pacific region, it’s estimated that 1.1 billion plastic items were entangled in the region’s coral reefs in 2010, with this pollution projected to grow by 40% by 2025. Particularly worrying was that entangled corals were 20 to 80 times more likely to contract disease.

Lost or abandoned fishing gear, often referred to as ghost gear, is also a serious threat to corals all over the world and can remain entangled on reefs for decades, smothering, breaking and abrading the structures, sometimes killing entire reef systems. Corals also accumulate microplastics in and on their polyps, negatively impacting the corals themselves and their symbiotic algae, and altering reef community structures.

Mangroves – which provide many coastal communities with food security and flood defences among other services – are often close to river mouths where plastic pollution accumulates and gets trapped in their complex root systems that become plastic sinks. Some of the world’s highest litter densities have been recorded in mangrove forests, with higher pollution levels correlating with lower tree health. A recent study of Javan mangrove forests found a density of 2,700 plastic items per 100m², with plastic covering up to 50% of the forest floor at several locations. In an experiment, trees whose roots were completely covered with plastic had a lower leaf area index and survival rate. Furthermore, efforts to rehabilitate degraded mangrove areas can be less effective when tree seedlings are smothered by plastic.

Plastic pollution has been found more than 10 km beneath the surface in the Mariana Trench, the deepest point on Earth. Conditions here are relatively stable, so the waste could lie undisturbed for centuries. In some cases, it creates an artificial hard substrate in the mud on the deep seafloor for new organisms to colonize. While plastic is thus beneficial for these species, its presence can alter the community structure of the native ecosystems.

POLLUTING THE FOOD CHAIN

Ingested plastic can move right up the marine food chain – and is now found in human diets, too.

When marine animals ingest plastic, fields and laboratory studies have demonstrated that those plastics – and their associated chemical pollutants – can pass further up the marine food chain.

Studies have confirmed the existence of microplastics in the water column and the incorporation of these particles into sinking aggregates. These sinking particles are consumed partly or completely by plankton and other tiny organisms, which form the base of marine food webs. Disruptions in the efficiency of biological processes can negatively affect how they function.

Despite a recent surge of research on their effects on organisms, surprisingly little is currently known about the potential impacts of plastics on human health – but it’s safe to say people are ingesting and ingesting them. Ingestion of microplastics by blue mussels, for example, has been demonstrated through most of their natural and introduced range and the same is true for oysters. Since both are consumed whole by humans, there’s no way of avoiding the plastics they contain. Similarly, four out of 20 seabird species examined organisms. The data were extracted from 180 studies on microplastic ingestion (LITTERBASE). The blue thumbnails above the bars show the total number of studies from which data were analysed for this figure.

Despite recent increases in microplastic emissions, the data suggest that plastic pollution is hitting coral reefs and mangroves particularly hard.

Plastic pollution is now found everywhere in the global ocean, certain key marine and coastal ecosystems are particularly at risk as they are already facing multiple threats in addition to growing levels of plastic pollution. These ecosystems – coral reefs and mangroves – are notable examples – provide vital services to people as well as marine life, so humans are directly affected when plastic negatively affects how they function.

The scale of the threat plastic poses to coral reefs – already in crisis due to global warming – is alarming. In the Asian Pacific region, it’s estimated that 1.1 billion plastic items were entangled in the region’s coral reefs in 2010, with this pollution projected to grow by 40% by 2025. Particularly worrying was that entangled corals were 20 to 80 times more likely to contract disease.

Lost or abandoned fishing gear, often referred to as ghost gear, is also a serious threat to corals all over the world and can remain entangled on reefs for decades, smothering, breaking and abrading the structures, sometimes killing entire reef systems. Corals also accumulate microplastics in and on their polyps, negatively impacting the corals themselves and their symbiotic algae, and altering reef community structures.

Mangroves – which provide many coastal communities with food security and flood defences among other services – are often close to river mouths where plastic pollution accumulates and gets trapped in their complex root systems that become plastic sinks. Some of the world’s highest litter densities have been recorded in mangrove forests, with higher pollution levels correlating with lower tree health. A recent study of Javan mangrove forests found a density of 2,700 plastic items per 100m², with plastic covering up to 50% of the forest floor at several locations. In an experiment, trees whose roots were completely covered with plastic had a lower leaf area index and survival rate. Furthermore, efforts to rehabilitate degraded mangrove areas can be less effective when tree seedlings are smothered by plastic.

Plastic pollution has been found more than 10 km beneath the surface in the Mariana Trench, the deepest point on Earth. Conditions here are relatively stable, so the waste could lie undisturbed for centuries. In some cases, it creates an artificial hard substrate in the mud on the deep seafloor for new organisms to colonize. While plastic is thus beneficial for these species, its presence can alter the community structure of the native ecosystems.
THE ADDITIVE EFFECT

Plastic pollution combines with other threats to marine life to form a precarious cocktail

The effects of plastic on marine ecosystems should not be considered in isolation. Plastic pollution is one of several manmade threats including ocean warming, overharvesting, ocean acidification, eutrophication, deoxygenation, shipping and underwater noise, invasive species, habitat destruction and fragmentation, as well as other forms of chemical pollution.

It’s usually very difficult to pinpoint a single decisive factor behind a decline in marine life, but where particular threats overlap, negative impacts will be exacerbated, especially for species that are already threatened. Further study is needed before we fully understand the ‘additive’ or ‘synergistic’ effects that occur when multiple stressors combine, but it’s likely that the consequences may be severe – and this trend will probably become worse in future. Many experts agree that the planet is already undergoing a mass extinction, and unchecked plastic pollution will undoubtedly be a contributing factor as the crisis worsens.

There’s another critical point to bear in mind when looking to the future. As plastic pollution continues to accumulate in the oceans, all the harmful effects that have been documented will increase – and there’s a real possibility that this will mean crossing threshold levels of risk for many more subpopulations, species and ecosystems. If plastic pollution continues growing at current rates, researchers predict that 99.9% of all seabird species will ingest plastics by 2050, while evidence of ingestion and/or entanglement has already been found in all marine turtle species.

ATTACKING THE ROOTS OF THE PROBLEM

Targeting the causes of plastic pollution before it happens is far more effective than cleaning it up afterwards

Similar to the climate crisis, this issue affects the entire planet: plastic pollution levels are continuously increasing, and only global and systemic solutions will succeed in response. Encouragingly, public attention is now focused on the issue, and calls are growing for decisive international action to turn the tide before plastic pollution overwheels the resilience of a critical number of marine species and ecosystems.

One solution that is often proposed is the collection and removal of plastic pollution from the ocean. In the same way that carbon-capture technology has been promoted by some groups to alleviate climate change, large-scale removal technologies for marine plastic pollution – with futuristic technological and yet unproven solutions – are increasingly being promoted. However, even if they were shown to be theoretically possible, the widespread use of such technological solutions would likely have significant economic costs and would not sufficiently turn the plastic pollution tide. Furthermore, the impact of removal on marine ecosystems has not been adequately assessed: such removal solutions could do more harm than good if they amplify the mortality of bycaught marine life and continuously remove substantial amounts of biomass in the middle of the food-limited ocean, especially when scaled up. They are also likely to have significant carbon footprints, and would almost certainly not remove the smaller plastics from the ocean. There are some removal methods for microplastics, but most of them are currently only applicable for wastewater treatments.

A far more important approach is simply to prevent plastic waste entering the environment in the first place, which also implies a major reduction in primary plastic production. Such an approach would have additional benefits including reduced resource use and pollution from manufacturing, transportation and disposal of plastic waste.

After decades of delays, the world is finally beginning to come together to act collectively and decisively on the climate crisis. The global plastics crisis, too, should be everybody’s urgent business. There’s no time to waste: action must begin now.
CALL TO ACTION
A BINDING INTERNATIONAL TREATY IS URGENTLY NEEDED

A new global treaty on plastics must be binding, ambitious and hold states to a common standard of action. The treaty should contain specific, clear and universally applicable rules and obligations across the lifecycle of plastics that allow for an effective response to the global plastic pollution crisis. It must include provisions to ensure that those rules can be evaluated and gradually strengthened over time and shaped in a way that promotes global equity and incentivizes participation and compliance.

The treaty should include:

- A clearly formulated vision of eliminating direct and indirect discharge of plastic into nature, based on the precautionary principle and in recognition of the devastating impacts of plastic pollution.
- An obligation to develop and implement ambitious and effective national action plans, on prevention, control and removal of plastic pollution.
- Common definitions, methods, standards and regulations for an efficient and harmonized global effort to combat plastic pollution across the lifecycle of plastic, including specific requirements to ensure circularity and bans on certain plastic products deemed to pose a particular risk to the environment, such as certain single-use plastic products and intentionally added microplastics.
- Explicit bans on certain acts considered to defeat the object and purpose of the treaty, including deliberate dumping of plastic waste in river systems and internal waters.
- An agreed measurement, reporting and verification scheme for tracking plastic pollution discharges and the progress made to eliminate them at a national and international level.
- A specialized and inclusive international scientific body with a mandate to assess and track the scale, scope and sources of plastic pollution, harmonize scientific methodologies and collate state-of-the-art knowledge to provide inputs for decision-making and implementation.
- A global financial and technical arrangement, as well as technology transfer assistance, to support the effective implementation of the treaty by all parties.
- A commitment to update, revise and develop these measures and obligations over time.

UNCHECKED PLASTIC POLLUTION WILL BECOME A CONTRIBUTING FACTOR TO THE ONGOING SIXTH MASS EXTINCTION LEADING TO WIDESPREAD ECOSYSTEM COLLAPSE AND TRANSGRESSION OF SAFE PLANETARY BOUNDARIES.