SHELLBANK
MARINE TURTLE TRACEABILITY TOOL
NOVEMBER 2022
Acknowledgements
This report was written by Michael Jensen (research consultant to WWF-Australia/Arthur University) and Christine Madden-Hof (WWF-Coral Triangle Programme), with contributions made by Greg Franklin (Australian Museum), Corin Fischer (consultant to WWF-Great Barrier Reef Programme), Rina Assem Failous (Department of Environment and Natural Resources, Aqaba Governorate, Jordan) and review by Eric L. LaCasella (NOAA), Peter Dutto (NOAA), Nancy Hilmisse Marlin (Ghana University), and the Indo-Pacific Blackwood Working Group.

We appreciate the support of all researchers, conservationists and government officials that have contributed to the collection and analysis of samples for the study. And we thank all current and future partners that have made ShellBank a reality. ShellBank was not possible without the generous support from Royal Caribbean Group and WWF supporters.

WWF
WWF is one of the world’s largest and most experienced independent conservation organisations, with over 5,000 supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which human life is in harmony with nature, by conserving the world’s biodiversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption.

WWF coordinates Southeast Asia and Pacific (Asia-Pacific) efforts to address unsustainable sea and illegal trade in marine turtles and turtle products. With a focus on hawksbill turtles, the program of work is multifaceted and involves collaboration between several organisations. One of the initiative’s objectives is to develop and apply new, innovative approaches to effectively track marine turtles and turtle products along the trade chain from source to sale. To achieve environment and conservation, the traceability of hawksbill turtle products targeted in trade legalisation cases.

About Royal Caribbean Group
At Royal Caribbean Group, respect for the oceans and the environment is not a choice; it’s a way of life. Oceans make up to 71% of the planet and are earth’s oxygen source and our right to explore. That’s why we are intensely focused on using the best technology to advance our efforts to ensure a sustainable future for all of us.

Suggested citation

Front cover photo: © Nicklen / Getty Images / WWF-UK

A WWF-Coral Triangle Programme publication.

Published in November 2022 by WWF-International Wildlife Practice and Coral Triangle Programme (Jakarta, Indonesia).

Any republication in full or in part must mention the title and credit the above-mentioned publication as the copyright owner. All rights reserved.

Contents

Key Messages

6

Tracking the Turtle Trade

8

ShellBank - A Transnational Toolkit to Track Turtle Trade

10

How Does It Work, Using DNA?

12

ShellBank Transboundary Genetic Databases

16

ShellBank in Practice

18

Users and Contributors

18

Database Entry and Access

19

ShellBank Collaborations

19

Status of ShellBank

20

ShellBank Results

22

Nesting and In-Water Database

24

Confinement Database

25

Case Studies

26

Enhanced Cooperation, Collaboration and Co-building Through Regional and National Workshops

32

Where to From Here?

34

Expanding the Database

34

Continue to Build Capacity

35

Advance the Science and Provide New Solutions

36

Conclusion

37

Appendix 1: Regional and Country Summaries

38

South East Asia and Western Pacific Ocean Region

40

Australia

42

Fiji

44

Indonesia

45

Japan

47

Malaysia

48

Papua New Guinea

50

Philippines

51

Singapore

52

Solomon Islands

53

Thailand

54

Timor-Leste

55

Vanuatu

56

Viet Nam

57

Central and West Indian Ocean Region

58

Central and Eastern Pacific Ocean Region

59

Atlantic Ocean Region and The Caribbean

60

Appendix 2: Marine Turtle Datasets (Distribution, Trend, Threats and Conservation)

61

Appendix 3: Hawksbill Turtle Genetic Stocks/Management Units

62

References

64
KEY MESSAGES

THE ILLEGAL TURTLE TRADE IS ALIVE AND THRIVING IN MANY COUNTRIES GLOBALLY

But it remains unclear where unsustainable take and trade is occurring, and most prevalent today, and which populations are being targeted.

SHELLBANK - A TRANSNATIONAL MARINE TURTLE TRACEABILITY TOOL - IS A GAMECHANGER

And the only traceability method we can use to track the covert and underground marine turtle trade. After years of refinement, ShellBank is now ready to be taken from pilot into practice.

IT USES DNA AND FORENSIC ANALYSIS TO TRACK TRADE AND PINPOINT POPULATIONS MOST AT RISK

Like tracing elephant ivory and rhino horn, ShellBank uses DNA and forensic analysis to trace the trade, identify poaching hotspots and pinpoint marine turtle populations most at risk for better enforcement and protection.

SHELLBANK CONSISTS OF A RAFT OF TOOLS

ShellBank’s toolkit consists of DNA reference (Rookery Baseline and In-Water) and Confiscation databases, capacity building and training workshops, and other resources such as standard operating protocols.

ITS ‘BANKS’ OF GENETIC DATA ARE RAPIDLY EVOLVING AND WHEN COMBINED ALLOW TRACEABILITY

ShellBank’s transnational genetic databases are a rapidly evolving global repository for marine turtle mitochondrial DNA of the genetically distinct turtle populations. The combined databases are the result of many international partnerships to allow traceability of the marine turtle trade.

SHELLBANK CAN BE USED AND CONTRIBUTED TO BY MANY, FOR RESEARCH CONSERVATION AND LAW ENFORCEMENT

ShellBank can be used by researchers and conservation managers to identify and track a turtle’s population origin and its geographic (transmigratory) boundary. It can be used by law enforcers as a line of evidence in investigations or prosecutions.

HAWKSBILL TURTLES ARE THE FOCUS OF THE FIRST SHELLBANK REPORT

Because of the lack of genetic information, their vulnerability to extinction and to the illegal trade, this first ShellBank report focuses on hawksbill turtles in the Asia-Pacific region only.

“Ultimately, our goal is to see ShellBank become a vital resource for law enforcement, researchers and conservation managers, allowing routine identification and protection of marine turtle populations most impacted by the illegal turtle trade.”
KEY RESULTS

SHELLBANK WAS ESTABLISHED IN 2018

SO FAR, COLLABORATORS ACROSS 15 COUNTRIES ARE HELPING BUILD SHELLBANK
The turtle conservation community has tripled the number of sample locations recorded in ShellBank’s Asia-Pacific database.

- More than 650 samples from 18 locations have been collected and are in the process or in the queue to be analysed by local research groups across Asia Pacific.
- Several ShellBank training sessions have been provided to over 65 researchers, and over 60 law enforcement officers across multiple countries.

MORE WORK IS NEEDED TO GROW THE DATABASES – THE BACKBONE OF SHELLBANK
Genetic data gaps remain for hawksbill turtles in Asia-Pacific; only seven genetic stocks have been assigned to date. ShellBank collaborations are key to rapidly expanding and improving the reference databases. Without this knowledge, ShellBank will not work.

FUTURE SHELLBANK REPORTS WILL HELP PINPOINT TRADE AND WHERE TARGETED EFFORT IS NEEDED
ShellBank reports are anticipated to be released on an annual basis to provide a snapshot of effort and where targeted enforcement and protection is most needed.

SHELLBANK IS SET TO EXPAND IN 2023
ShellBank’s focus will expand to other marine turtle species and regions in 2023.

SHELLBANK HAS A CLEAR VISION FOR GROWTH, READY TO BE TAKEN FROM PILOT TO PRACTICE
Already aligned to policy, we now have a clear vision for ShellBank’s refinement, use and uptake as the only traceability toolkit to track the illegal marine turtle trade and guide effective protection of these endangered species.

ShellBank is hosted externally and can be accessed at: www.shellbankproject.org or by emailing: shellbank@wwfnt.org
Six of the seven marine turtle species have been assessed for their risk of extinction in the IUCN’s Red List; all are listed as Vulnerable to Critically Endangered. Many factors have contributed to this decline, including bycatch in fisheries, pollution, degradation of nesting and foraging habitats, and climate change, but of significant concern is the ongoing legal and illegal unsustainable take (hunting and use of turtles and turtle parts) and trade. For the Critically Endangered hawksbill turtle (Eretmochelys imbricata) alone, its numbers are estimated to be at least 80% lower than historical levels, with approximately only 6,900 nesting females remaining in both the Indian and Pacific Ocean basins (Mortimer and Donnelly, 2008).

Whilst it’s been reported that around nine million hawksbill turtles were harvested over a 150-year period (1842-1992) for the tortoiseshell trade concentrated in Southeast Asia, hawksbills and green turtles (Chelonia mydas) are still subject to significant illegal trade for their eggs, meat and shell globally, even though it’s banned under the Convention of International Trade in Endangered Species (CITES) internationally (CITES Secretariat, 2019; Nahill et al., 2020; IOSEA, 2024). To give an indication of poaching levels, a 2019 survey estimated 365,000 eggs are sold at Kuala Terengganu market annually, which generally correlates with the yearly total of 422,000 eggs estimated by TRAFFIC in 2019 (CITES Secretariat, 2019). This is presumably a small fraction of the actual number harvested and sold across other cities of Peninsular and Sabah, Malaysia, let alone other neighbouring countries and those globally targeting eggs for use and trade.

Studies continue to suggest overexploitation (harvest or poaching) of marine turtles and links between domestic use and illegal trade (CITES Secretariat, 2019; Miller et al., 2019; Ingram et al., 2022; Lopes et al., 2022). The illegal trade in marine turtles and their parts or products ranges from domestic, small-scale operations where turtles are hunted to support local markets, to large-scale operations where turtles are harvested and trafficked internationally (Gomez and Krishnasamy, 2019; Miller et al., 2019). Although against existing laws prohibiting their use and trade, a recent study has conservatively estimated that 1.1 million marine turtles (excluding shell products and eggs) have been illegally exploited in 65 countries across the world over the last 30 years (1990-2020), of which 22% could be attributed to having been traded internationally (Senko et al., 2022). Noting this is a gross underestimate as no eggs or turtle shell items were offered for sale since 2017 alone with substantial illegal markets (Nahill et al., 2020). This was further substantiated by a study on Japan’s undiminishing domestic stockpiles and a rising tortoiseshell market of mostly raw product (since 2015), with illegal sourcing possibly shifting from Southeast Asia to the Caribbean region in recent years (Kitade et al., 2021).

There are no global estimates on egg exploitation, but it is considered significant (CITES Secretariat, 2019; Ingram et al., 2022; IOSEA, 2024). To give an indication of poaching levels, in Peninsular Malaysia, a 2019 survey estimated 365,000 eggs are sold at Kuala Terengganu market annually, which generally correlates with the yearly total of 422,000 eggs estimated by TRAFFIC in 2019 (CITES Secretariat, 2019). This is presumably a small fraction of the actual number harvested and sold across other cities of Peninsular and Sabah, Malaysia, let alone other neighbouring countries and those globally targeting eggs for use and trade.

Whilst global studies indicate high-risk exploitation countries (Humber et al., 2014) and populations within broad geographic boundaries (e.g. regional Management Units of the West Pacific and Southeast Asia, East Atlantic, Southwest Atlantic and South Caribbean; Senko et al., 2022), data remains poor, patchy and a gross underestimation. It remains unclear where turtle take and trade is occurring and most prevalent today, and which populations are being targeted. The marine turtle supply chain has changed significantly and seemingly shifted from open markets to a more covert form (CITES Secretariat, 2019; Vuto et al., 2019). This trade continues in many countries globally (CITES Secretariat, 2019; Nahill et al., 2020), where demand is high and increasing through new and re-emerging black markets in Asia, including China, Japan, Vietnam, Taiwan and Hong Kong (Lam et al., 2012; Senko et al., 2022; Kitade et al., 2021).

A lack of investigation, indictment, compliance and enforcement capacity across the region enables the illegal turtle trade to continue. It cannot be dismantled without knowing where and how turtles, their parts and products are sold or more importantly, data and evidence of where and what turtles are illegally harvested. As a result, we need to urgently implement and adopt new technologies built to trace the illegal turtle trade. For turtle species and populations at risk of extinction from overexploitation, time may be running out.

WWF and its partners are actively addressing this challenge through ShellBank – a global marine turtle traceability tool.

Following the success of tracking poached populations of elephants and rhinos through the genetic signatures found in their ivory and horns, tracing the marine turtle trade can be achieved via ShellBank. WWF is partnering with researchers, universities, museums, NGOs and governments to continue developing and applying genetic tools that will identify poaching hotspots and pinpoint marine turtle populations that are most impacted by the trade across the Asia-Pacific region and globally. ShellBank, which has been in the pilot phase since 2019, is now ready to be geared up for the next phase, putting it into practice.

Six of the seven marine turtle species have been assessed for their risk of extinction in the IUCN’s Red List; all are listed as Vulnerable to Critically Endangered. Many factors have contributed to this decline, including bycatch in fisheries, pollution, degradation of nesting and foraging habitats, and climate change, but of significant concern is the ongoing legal and illegal unsustainable take (hunting and use of turtles and turtle parts) and trade. For the Critically Endangered hawksbill turtle (Eretmochelys imbricata) alone, its numbers are estimated to be at least 80% lower than historical levels, with approximately only 6,900 nesting females remaining in both the Indian and Pacific Ocean basins (Mortimer and Donnelly, 2008).

Whilst it’s been reported that around nine million hawksbill turtles were harvested over a 150-year period (1842-1992) for the tortoiseshell trade concentrated in Southeast Asia, hawksbills and green turtles (Chelonia mydas) are still subject to significant illegal trade for their eggs, meat and shell globally, even though it’s banned under the Convention of International Trade in Endangered Species (CITES) internationally (CITES Secretariat, 2019; Nahill et al., 2020; IOSEA, 2024). To give an indication of poaching levels, in Peninsular Malaysia, a 2019 survey estimated 365,000 eggs are sold at Kuala Terengganu market annually, which generally correlates with the yearly total of 422,000 eggs estimated by TRAFFIC in 2019 (CITES Secretariat, 2019). This is presumably a small fraction of the actual number harvested and sold across other cities of Peninsular and Sabah, Malaysia, let alone other neighbouring countries and those globally targeting eggs for use and trade.

1.1 MILLION MARINE TURTLES (excluding shell products and eggs) have been illegally exploited in 65 countries across the world over the last 30 years (1990-2020), of which 22% could be attributed to having been traded internationally.
SHELLBANK – A TRANSNATIONAL TOOLKIT TO TRACK TURTLE TRADE

ShellBank is a targeted response to marine turtle populations in trouble, where poaching and trade continue to threaten and dampen population recovery.

It provides a way to not only track trade for use by law enforcers as a line of evidence in investigations or prosecutions, but also to track a turtle’s population origin and its geographic (transmigratory) boundary for conservation management, and protection purposes. To pinpoint populations and the geographic region in which they are being targeted in use and trade enables targeted response (e.g. greater compliance and enforcement) and where recovery effort (e.g. further conservation management and protection) can be enacted. Extinction is likely for some turtle populations, particularly in the Asia-Pacific region, and the use and upscaling of ShellBank efforts may be our last line of defence.

THE ROLE OF SHELLBANK IS TO ENABLE GOVERNMENTS, SCIENTISTS, CONSERVATIONISTS AND COMMUNITIES TO:

1. Track the illegal marine turtle trade from “sale to source”.
2. Identify populations targeted in trade, especially those most at risk from poaching and require stronger protection.

Ultimately, our goal is to see ShellBank become a vital resource for law enforcement, researchers and conservation managers, allowing routine identification and protection of populations most impacted by the illegal turtle trade.

The ShellBank toolkit consists of rapidly evolving reference and confiscation databases, capacity building and training workshops, and other resources such as standard operating procedures to support implementation.

SHELLBANK CONTINUES TO:

- Coordinate and build on an open-source transnational genetic database for use by conservation research and law enforcers, through genetic sample collection, analysis, and data sharing throughout the region;
- Advance knowledge of turtle stock structure and composition and specimens sourced, transiting or sold at transaction points using the transnational genetic database;
- Build in-country capacity for genetic sample collection and analysis by providing standard operating protocols, conducting workshops and providing expert advice that can be applied to all marine turtle species and sample types (e.g. meat, eggs, shell, etc.).

ShellBank is one of its kind and currently, the only global traceability method available to track the covert and underground marine turtle trade.1

The threat is very real, with ongoing and surging efforts by CITES and the Convention of Migratory Species (CMS) in recent years to assess and activate governments to prioritise tackling the illegal marine turtle trade. With a recently endorsed use and trade focused CMS Single Species Action Plan for Hawksbill Turtles in South-east Asia and the Western Ocean Pacific Region (SSAP) and revised proposals under CITES mandating countries to take genetic samples to track trade, ShellBank is well poised to support action on marine turtle trade and provides the necessary tools, capacity training and programme to do so.

ShellBank is a gamechanger, a world first.1

1 This project is part of WWF’s Global Protecting Turtles for Tomorrow Strategy and forms part of a larger Marine Turtle Use and Trade Initiative (Cracking the Code for Recovery) to address marine turtle use and trade in the Asia-Pacific, coordinated by the WWF-Coral Triangle Programme. The overarching goal of this initiative is to safeguard marine turtle populations in the Asia-Pacific region so they are no longer at risk of extinction and no longer targeted for trade. This program is currently being expanded globally and beyond hawksbill turtles.
In addition to physical tagging and satellite transmitters, molecular (DNA) sampling is used as a more time-efficient and cost-effective tracking tool to determine the geographic origin of individuals. To accurately trace traded turtles, their parts or products back to where they were poached, ShellBank uses DNA. Genetic approaches have been useful in research and wildlife forensic investigations. These techniques have been successfully applied to the illegal poaching of elephants, tigers, rhinoceros, birds etc. (Wasser et al., 2008; Ewart et al., 2018; Niudant et al., 2018; Ghosh et al., 2019). For example, DNA extracted from ivory has been used to identify the location of the poaching hotspots for African elephants by statistically matching the genetic signature of confiscated ivory to geographic or population-specific genetic signatures (Ehatman et al., 2015). And now, through ShellBank, it can be applied to marine turtles.

We do this by extracting mitochondrial DNA (mtDNA) from turtles and their parts or products and comparing it to the mtDNA variants (called haplotypes) of turtles from known marine turtle populations (a reference database). These genetic signatures are our roadmap to trace turtles back to their geographic origin (nesting population). Used by scientists for decades to assign a turtle’s nesting origin from foraging areas (Jensen et al., 2016; Read et al., 2015; Velez-Zuazo et al., 2008), those caught as fisheries bycatch or stranded (LaCasella et al., 2013), it only recently applied by scientists for decades to assign a turtle’s nesting origin from foraging areas (Jensen et al., 2016; Read et al., 2015; Velez-Zuazo et al., 2008), those caught as fisheries bycatch or stranded (LaCasella et al., 2013; Rankin-Baransky et al., 1975; Stewart et al., 2016), but only recently applied through ShellBank to the tortoiseshell trade (LaCasella et al., 2021). The bank of all data combined is what allows us to determine the population origin of turtles and their parts or products from ‘sale to source’.

Similar to other traceability tools (e.g. tracing elephant ivory using the Elephant Trade Information System (ETIS) and Monitoring Information), or rhino horn using Rhino DNA Index System (RDIIS), ShellBank relies on a comprehensive reference database, a database of the genetically distinct turtle populations from all over the world. A successful reference database depends on the extent to which all the potentially contributing nesting populations and their foraging and migratory areas have been sampled. In contrast to these visible and relatively accessible land-dwelling species, turtles spend most of their life being invisible and relatively inaccessible as their migratory routes span thousands of kilometres across multiple countries, and as they nest on thousands of mainland beaches and remote islands. Focused on marine turtle species that are targeted in trade – primarily hawksbill and green and, to a lesser extent, leatherback turtles (see Box 2, The Flight of Key Traded Marine Turtles), reference data is exponentially growing but remains poor for some species and some regions. This is particularly so for the Critically Endangered hawksbill turtle, the least studied marine turtle in the world (Limpus, 2009) and the primary turtle targeted for the tortoiseshell trade (Nahlil et al., 2020). Because our understanding of the population structure of hawksbill turtles in the Asia-Pacific is the most limited globally, this is where ShellBank began.

This first ShellBank report covers hawksbill turtles in the Southeast Asia and Western Pacific Ocean Region, as we initiate expansion to green and leatherback turtles and beyond the bounds of the Asia-Pacific to the global populations and regions of the Atlantic Ocean Region and Caribbean, Central and Eastern Pacific Ocean Region, Central and West Indian Region starting in 2023. This is critical to enable ShellBank to work at its best.

“ShellBank relies on a reference database, a database of the genetically distinct turtle populations from all over the world so that traded turtles, their parts or products can be accurately traced back to where they were poached.”

Marine turtles are known as the ancient mariners. They are highly migratory and often utilise foraging areas far from where they were born. However, one of the most remarkable facts about marine turtles is their natal homing behaviour, where female (and possibly male) turtles return to their region of birth to breed and lay eggs. The mtDNA is maternally inherited, meaning that it is only passed down from mothers to their offspring, making it the genetic marker of choice for detecting the population structure of marine turtle nesting populations. Because female turtles are highly philopatric to their natal region, they generate a strong genetic similarity between turtles nesting within the same area and significant differences between regions (Jensen et al., 2013). They essentially generate a characteristic genetic signature for each nesting region. These genetically distinct nesting populations are also referred to as genetic stocks or Management Units (MUs).

When a comprehensive understanding of the genetic signature of all (or most) nesting populations is available, they can be used to identify the origin of samples collected away from the nesting beaches, such as foraging areas, fisheries bycatch or illegal tortoiseshell products. This approach is known as mixed stock analysis and provides a rigorous statistical approach to estimating the geographic origin of samples. This analysis has been extensively used in marine turtles to determine the rookery origin of turtles sampled at foraging areas (e.g. Gaos et al., 2017; Bell and Jensen, 2018). However, the power of mixed stock analysis depends on the extent to which all the potentially contributing nesting populations have been sampled. For hawksbill turtles in the Asia-Pacific, our understanding of the population structure is limited. Nonetheless, recent studies have made significant advances identifying at least seven distinct genetic stocks (Nishizawa et al., 2016; Vargas et al., 2016), and through ShellBank and other Working Groups (e.g. Asia-Pacific Marine Turtle Genetic Working Group and the Indo-Pacific Hawksbill Genetic Working Group) sampling is well underway by multiple organisations to characterise remaining gaps and collectively develop this transnational genetic baseline database through partnership and capacity building.
BOX 2: THE PLIGHT OF KEY TRADED MARINE TURTLES

HAWKSBILL TURTLES *(Eretmochelys imbricata)*

Hawksbill turtles are well known for their beautiful shells and their essential role in maintaining our coral reef ecosystems (León and Bjorndal, 2002). Recent publications state hawksbill turtle exploitation and trafficking is a global conservation priority (Nahill et al., 2020; Madden Hof et al., 2022; Senko et al., 2022) with recent global estimates (excluding eggs and tortoiseshell products) revealing that hawksbill turtles make up over half of the illegal exploitation (where species were reported) over the past decade (2010-2020), and over six times higher in legal harvests that were previously reported (Humber et al., 2014; Senko et al., 2022). The species has never properly recovered, and unfortunately, declines in hawksbill turtle populations continue in many countries globally (Hamman et al., 2022; Madden Hof et al., 2022; Mortimer and Donnelly, 2008). We are concerned that turtle use severely reduces populations, and trade is outstripping a rapidly diminishing supply.

GREEN TURTLES *(Chelonia mydas)*

Green turtles are also moving toward a similar fate. Considered Endangered internationally (IUCN Red List, 2004) and facing multiple threats at each life history stage, they are readily consumed and traded across the globe (CITES Secretariat, 2019). While overexploitation continues (Ingram et al., 2022) in many countries, green turtles dominate legal and illegal marine turtle exploitation (Humber et al., 2014; Senko et al., 2022; Vuto et al., 2019). The concern is rising amongst some scientists that the use and trade of green turtles will replace an outstripped or diminishing supply of hawksbill turtles.

LEATHERBACK TURTLE *(Dermochelys coriacea)*

Leatherback turtle populations are also declining in many places globally, where the conservation status of different sub-populations vary from Data Deficient to Critically Endangered (IUCN Red List, 2013). While bycatch in fisheries remains a key threat, leatherback turtles are also subject to a long history of harvesting, with some recent reports of their leathery shells being made into handicrafts. Leatherback population numbers are critically low, with the western Pacific population estimated to be approaching extinction. Only 1,277 nesting females are estimated, with overall numbers declining at about 6% per year (from 2011 to 2017; Benson et al., 2020).

SHELLBANK REFERENCE DATABASE

"POSSIBLE POACHED POPULATION"

DETECTION OF POPULATION ORIGIN USING DNA

Figure 1: Simplified workflow of Shellbank to determine the population origin of marine turtles, parts or products.
The ShellBank Database is a global repository for marine turtle mtDNA haplotype (genetic variant) data that allows routine identification of populations most at risk from unsustainable use and trade and in need of protection.

It includes three genetic databases: Rookery Baseline, In-Water, and Confiscation.

The Rookery Baseline Database and In-Water Database make up the reference database, and the Confiscation Database keeps records of the genetic information on confiscated items, such as jewellery, eggs, or scutes. Together, these three databases allow traceability of the marine turtle trade and conservation research.

The Rookery Baseline contains genetic data from samples collected from known marine turtle nesting populations. This is essential to tracing the origin of traded turtles, their parts and products.

The In-Water category primarily contains genetic data from juvenile and adult hawksbill turtles sampled at foraging areas, but also from stranded turtles or those caught as fisheries bycatch. While not directly used to trace the origin of turtles, parts and products, this data allows for the geographic boundaries of nesting populations to be assessed (a likely poached location, and in turn, helps inform the ‘boundaries’ of criminal activity).

The final category, Confiscation, contains genetic information on the turtle, part or product collected from warehouse stockpiles, seizures, or citizen science donations. This is the data used to cross-check against the reference database for a genetic stock (likely poached population and location) match. Initially, this database will also help inform what Rookery Baseline data is missing whenever new genetic variants are found in the In-Water or Confiscation databases, but not yet in the Rookery Baseline.

“ShellBank provides a programme of work to address critical population declines, aid in transboundary migratory understanding and identify what populations and sites require protection, whilst tackling the illegal marine turtle trade. With a focus on hawksbill turtles initially, one of the most Critically Endangered marine turtle species on the planet, this programme will truly help both law enforcement and conservation managers to reverse the trajectory of populations struggling to recover.”
SHELLBANK IN PRACTICE

ShellBank has shown that, with complete Rookery and In-Water databases, it will be possible to accurately trace the population origin, enhance a country’s enforcement efforts against illegal traders, and advance marine turtle conservation at national and regional levels.

So far, ShellBank participation and contributions have come in many forms (see Case 1, 2 and 3). For example, collecting and sharing genetic data to build and improve the reference database, using newly seized turtles and turtle parts or product samples to identify poaching populations, to creating public awareness from historically donated samples, and implementing as common practice along the law enforcement chain (refer ShellBank Results).

As such, ShellBank can be used and contributed to by many. Whilst ShellBank moves from pilot to practice, it will continue to take coordinated effort and requires many countries to participate. ShellBank collaborations are key to rapidly expanding and improving the reference databases. Without this knowledge, ShellBank will not work.

DATABASE ENTRY AND ACCESS

ShellBank provides a single point of verifiable reference and repository for genetic data (e.g. Figure 2). The databases contain primarily peer-reviewed and published data. However, at the discretion and only in agreement with the data owners, it can include verifiable unpublished data by direct data submission, including from reports or presentations. As such, there may be different levels of access to the ShellBank databases. ShellBank encourages and provides technical support to unpublished data contributors to aid open-source publication.

Genetic data is both minded and freely provided by data owners in order to keep the database up-to-date. Access to the database is available as open-source (generally containing information on species, collection type (e.g. nesting or foraging), mtDNA haplotype, location, etc.), and can be freely used by anyone; law enforcement, conservation managers, researchers and students alike.

Users and Contributors

The current version of the ShellBank transboundary genetic databases are hosted locally with restricted access to ShellBank partners. These databases are still under development but are set for release to the broader research and law enforcement communities in the spring of 2023.

In recognition that ShellBank is multi-collaborative and a trusted repository platform, it is hosted externally from WWF and its partners at: www.shellbankproject.org

The website and database integration is currently under construction but the site will be a hub that contains information about ShellBank, resources (e.g. SOPs, publications, etc.), and provide access to the three databases.

You can access ShellBank at: www.shellbankproject.org

Figure 2: Example of data stored in ShellBank database

SHELLBANK COLLABORATIONS

Collaborations and working groups are key to the success of ShellBank.

Through instigating the membership of the Indo-Pacific Hawksbill Genetic Working Group (IPHGWG) and assisting to steer the Asia-Pacific Marine Turtle Genetic Working Group (APMTGWG), WWF is part of a growing network of research and science-based organisations throughout the region identifying gaps and coordinating sampling and analysis of new genetic data. WWF has established a number of partnerships directly working on or contributing to ShellBank (refer ShellBank Results below).

WWF has also partnered with a team of forensic experts at TRACE Wildlife Forensics Network and the Australian Museum to work alongside law enforcement officers of various agencies to test, implement, align and embed ShellBank along their law enforcement chains, including through the provision of laboratory and front-line officer confiscation and evidential handling training and capacity building. For both the sample collection and laboratory analysis processes, the partnership is also producing a series of standard operating protocols (due 2023). These will guide ShellBank implementation and assist with validation and verification of data.

Although WWF instigated and led the establishment of ShellBank, its intent is for ShellBank to be managed and operated independently, and if valued and later endorsed as a CITES-mandated programme and traceability tool, on behalf of CITES Parties.
STATUS OF SHELLBANK

SHELLBANK IS CURRENTLY FOCUSED ON HAWKBILL TURTLES IN THE ASIA-PACIFIC REGION

As we continue to coordinate, build and expand the transnational genetic database, finalise the standard operating protocols, and transform the digital database and platform, we have begun to showcase ShellBank globally as we move from pilot into practice.

With the support from WWF and the work of local and international partners, we anticipate the collection and analysis of an additional 1000 new marine turtle samples by 2024 for the Asia-Pacific region. We will extend our hawksbill efforts to other regions across the globe. We will also begin incorporating green and leatherback MUs and identifying sampling gaps in 2023 to widen ShellBank’s useability.

ShellBank provides the programme and platform in which countries can deliver their mandates or required action on marine turtles for both conservation management and law enforcement purposes. The collection and analysis of genetic samples for marine turtles to determine species involved and populations of origin has been endorsed by CITES Parties’ Turtle Decisions (2019-2022). Again proposed in the CITES Resolution (from 2022 onwards), the collection and analysis of marine turtle DNA is also included in a number of other regional and national plans and strategies across the Asia-Pacific region (e.g. Indian Ocean South East Asian Marine Turtle Memorandum of Understanding (IOSEA MOU) Work Programme, the Secretariat of the Pacific Regional Environment Programme Pacific Islands Regional Marine Turtle Action Plan, CMS SSAP, etc.) highlighting ShellBank’s relevance, importance and need. As such, WWF is further prioritising its efforts to ensure ShellBank becomes operational and fully functional by 2025.

ShellBank reports are anticipated to be released on an annual basis to provide a snapshot of gaps and progress, and identify the key populations and localities targeted by trade - those that are in need of better law enforcement effort and conservation management protection. Over time, ShellBank can be used to establish and assess trends in illicit marine turtle trade and help evaluate if monitoring, enforcement, compliance and protection efforts are effective in dismantling the trade.
HISTORICALLY AND NOW, AT VARIOUS LEVELS, 15 COUNTRIES ARE COLLABORATING, PARTICIPATING OR HAVE EXPRESSED FURTHER INTEREST IN SHELBANK:

- Papua New Guinea and the Solomon Islands contributed genetic samples for the Cracking the Code pilot and helped present the outcomes at CITES Side Event CoP18 (refer Case Study 1) and are now involved in wild tissue sampling. [Partners contributing: University of the Sunshine Coast, Griffith University, The Nature Conservancy, Conflict Island Conservation Initiative, WWF-Australia; Papua New Guinea; Solomon Islands, governments.] The Solomon Island Government has recently expressed interest in furthering its participation in ShellBank.
- Australia supported citizen science and confiscation training and capacity building efforts as part of the ShellBank’s methodologies, application and utility as a law enforcement traceability tool, and provided training and capacity building to researchers, community groups and governments on how to collect and analyse genetic samples. We learned from our mistakes, allowing us to identify current limitations and where there is a need for future improvements.

SHELLBANK RESULTS

ShellBank is already growing into a unique resource that can be used for better understanding marine turtle population structure and connectivity, and for effectively tracking the trade. Turtle experts, universities and their students, museums, not-for-profits, community turtle monitors, and governments all contribute to ShellBank. As we move ShellBank from pilot to practice, we have developed a reliable method and protocol for extracting and sequencing mtDNA from turtle carapace, and consolidated and continued to build on existing efforts to create a comprehensive reference database. We have trialled, tested and demonstrated ShellBank’s methodologies, application and utility as a law enforcement traceability tool, and provided training and capacity building to researchers, community groups and governments on how to collect and analyse genetic samples. We learned from our mistakes, allowing us to identify current limitations and where there is a need for future improvements.

- Indonesia has a collection of genetic samples from nesting turtles and some shell products and are currently analysing some of the wild tissue samples (nesting turtles). [Partners contributing: Oceanogen, ELNAA, IPB, Syiah Kuala University, Bionasia]. Indonesia has recently expressed interest in furthering its participation in ShellBank under a national consortium of universities and not-for-profits. National ShellBank training with law enforcers from 10 different agencies was completed in September 2022 under the TRIPOD project.
- Timor-Leste, Thailand, Palau, Singapore, Kenya and Sabah, Malaysia have all recently expressed interest in collecting and analysing marine turtle samples primarily for conservation research. However, the latter two countries also expressed interest in ShellBank from the perspective of law enforcement. National training with law enforcers from 10 different agencies in Sabah, Malaysia was completed in July 2022 under the TRIPOD project.

- ShellBank is scheduled to be showcased to Viet Nam in partnership with TRAFFIC in mid-2023 and at a regional workshop with Indonesia, the Philippines and Sabah. Malaysia under TRIPOD in early 2023.

A snapshot of ShellBank country and regional summaries providing further information on the current status of protection, population trends, genetics stocks sampled, and future identified gaps is provided in Appendix 1. Noting, country summaries are only provided for higher density hawksbill populations, those where genetic sampling is underway, and/or those implicated in illegal trade. Future annual reports will showcase additional country summaries as partnerships grow.

© WWF-Australia

2 Targeting Regional Investigation and Policing Opportunities and Development (TRIPOD) project. It is a collaboration between Freeland, IUCN and WWF supported by the United States Department of State Bureau of International Narcotics and Law Enforcement Affairs, aimed at combating and disrupting illegal wildlife trafficking across the Sulu Celebes Seas.
Currently, the Rookery Baseline Database contains information on more than 1,900 published genetics samples collected across 72 hawksbill rookeries globally (Figure 3 and Appendix 2). These samples define a total of 32 individual Management Units (genetic stocks). In addition, more than 650 samples across 18 rookeries and 7 countries represent unpublished data (held by the IPHGWG members) where samples have been collected but not yet analysed and/or published. When these data are published and become open-access in the Rookery Baseline, it will triple the number of ShellBank locations for Asia-Pacific since the project began in 2018. Nevertheless, many genetic gaps remain in Asia-Pacific, as genetic sampling of hawksbill rookeries make up only a fraction of known nesting sites across the region (see Figure 4).

Still under development, the In-Water Database contains only 158 samples from 6 foraging grounds across 3 countries (Australia, Malaysia and Japan) for Asia-Pacific. This is partly caused by the incomplete Rookery Baseline. Several unpublished datasets exist though IPHGWG members that are awaiting publication until a more comprehensive Rookery Baseline becomes available. It is anticipated that this data will be published in the near future. Furthermore, the inclusion of global datasets will see the In-Water Database grow significantly in 2023.

Seventy-five samples are in the Confiscation Database for which genetic information exists. These samples are from Solomon Island and Papua New Guinea (Cracking the Code report) and Australia (Surrender Your Shell report). It is anticipated that the Confiscation Database will increase significantly in early 2023 as samples have already been collected from the Philippines stockpiles, representing historical and contemporary confiscated or seized marine turtle and shell products.

As we continue to build our collaborations with law enforcement agencies and ShellBank is used for intelligence and investigations, in the future, we will be able to provide maps of likely poached populations and locations targeted in trade.
The Cracking the Code report was released in 2019 and provided the first results on the mtDNA extraction and sequencing of tortoiseshell products for the ShellBank project. The project was completed in collaboration between the Southwest Fisheries Science Center (NOAA) and WWF-Australia to provide a proof of concept.

For more information see: Jensen MP, LaCasella EL, Dutton PH and Madden Hof CA. 2019. Cracking the Code: Developing a Tortoiseshell DNA Extraction and Source Detection Method. WWF-Australia.

Figure 5: Photos of 13 E. imbricata products sampled in Papua New Guinea (n=6) and Solomon Islands (n=7). The table shows the Lab-ID, Location, collection date, mtDNA d-loop haplotype and likely origin for each sample (*the likely origin should be interpreted with caution until a more robust analysis can be completed, see Discussion).
CASE STUDY 2: SURRENDER YOUR SHELL (AUSTRALIA) | DETECTING THE ORIGIN OF TORTOISESHELL PRODUCTS (2022)

In 2022, WWF-Australia, in collaboration with the Australian Museum and support from the Australian Government, established Surrender Your Shell (SYS), a citizen science ShellBank approach in which everyday Australians were given the opportunity to contribute to marine turtle conservation.

SYS encouraged Australians to surrender historically purchased tortoiseshell to assist with the development of the Confiscation Database by identifying hawksbill populations directly targeted by the illegal tortoiseshell trade.

SYS was also established to trial WWF’s ShellBank in practice – to test the ShellBank toolkit to track marine turtle trade by applying the DNA extraction method and further scrutinising its effectiveness on a greater variety of historical and newly donated tortoiseshell items. This was the first opportunity to improve the process of sample collection, sample handling, chain of custody (a documented process of item handling and transportation between institutions) and laboratory procedures.

To support the SYS initiative, the Australian Government adopted a six-month policy (3 December 2020–3 June 2021) that allowed Australians to send historically purchased tortoiseshell products to WWF-Australia, along with details of where and when the items were purchased, without risk of prosecution. With the Australian Government and in partnership with Australia’s only accredited wildlife forensics laboratory (the Australian Centre for Wildlife Genomics at the Australian Museum) the goal for SYS was to gain a snapshot of Australia’s contribution to the tortoiseshell trade, including its geographical scale and impact.

REAL OR FAKE?

CASE STUDY 3: SHELLBANK IN THE PHILIPPINES | CONFISCATIONS AND EXPANDING THE ROOKERY BASELINE

WWF and its partners, the LAMAVE and the University of the Philippines – Institute of Biology (UP-IB), have been working together with the Department of Environment and Natural Resources (DENR) of the Philippines, through the Biodiversity Management Bureau (BMB) and the Palawan Council for Sustainable Development (PCSD), on the collection, analysis, and sharing of hawksbill genetic data to build the Philippines’ contribution to ShellBank.

The partnership aims to build on the existing initiatives of DENR in collecting tissue samples from nesting, bycatch, stranded marine turtles, and those confiscated or seized as a result of illegal activity, and to reinforce data collection from other high-priority areas across the country where sampling was previously low. WWF and NOAA have also come together with LAMAVE to roll out genetic skill development training and workshops to key stakeholders across the country.

In the Philippines, the ShellBank Project aims to aid in the government’s efforts by:
1. Identifying the population of origin of the marine turtles that are often seized from the agency’s enforcement operations;
2. Classifying the hotspots (or sites) and connectivity of where these populations nest and forage (within and beyond the Philippines);
3. Expanding and intensifying monitoring and compliance efforts at the national and provincial levels;
4. Utilising as a unified platform for the agency to share its existing and prospective turtle data across the country and the Asia-Pacific region;
5. Using the database to inform future in-country publications and support other region-wide publications to help dismantle the illegal marine turtle trade.

Constrained by the COVID-19 pandemic, sampling has resumed and, as of September 2022, DENR-BMB has provided 87 samples to UP-IB for analysis, which consisted of blood, skin, scute or bone samples from hawksbill turtles. These samples were (1) rescued turtles turned over to the BMB-National Wildlife Rescue and Research Center, Quezon City; and (2) from apprehensions in Palawan and stockpiles of the Palawan Council for Sustainable Development in Puerto Princesa City, Palawan. LAMAVE has also collated and provided over 305 samples to DENR-BMB for processing and recorded 220 more samples available for analysis of hawkbill, green and olive ridley turtles as a result of their collaborative research projects over the years. The goal is to analyse 100 samples for ShellBank by the end of 2022 and identify poaching hotspots and populations targeted in trade. Moving forward, DENR-BMB and LAMAVE will refine the database to monitor the samples available and WWF will seek donations from collections held at the National Museum and identify hawksbill nesting and foraging hotspots that require future protection.
SHELLBANK HAS ENGAGED

> 60 law enforcement officers
> 65 scientists

A key part of ShellBank is to build in-country capacity and provide training. As a result, we undertake and offer various support. We also leverage ShellBank in multiple forums to help with awareness raising and advocacy to aid uptake.

Since taking ShellBank from pilot into practice, we have been providing virtual and face-to-face technical laboratory analysis training by our team of expert geneticists. We have also recently begun law enforcement sampling training by our team of expert forensic scientists.

To date, we have provided expert advice and delivered several technical training sessions to individuals, as well as hosting two regional workshops with over 65 scientists. We have conducted two law enforcement training sessions to over 60 law enforcement officers, across 10 different agencies (e.g. police, wildlife departments, etc.) in two different countries. We also presented the results of ShellBank at a special Illegal Trade workshop at the International Sea Turtle Symposium (ISTS) in 2022, and conducted awareness-raising presentations at more than eight other events.

Other events we presented ShellBank include: Secretariat of the Pacific Regional Environmental Programme (SPREP) marine species action planning and CITES Turtle workshops; CMS SSAP sessions; ISTS Oceania Regional meetings; EU Ocean Governance learning exchange; and various other conferences, including as a keynote speaker.

A snapshot of these are provided on the right.

ENHANCED COOPERATION, COLLABORATION AND CAPACITY BUILDING THROUGH REGIONAL AND NATIONAL WORKSHOPS

In 2022, two separate ShellBank national training workshops were held with multiple agencies (e.g. wildlife and/or marine and fisheries departments, police, customs, etc.) as part of the TRIPOD project. Half-day workshops were undertaken to introduce ShellBank, the role of forensics including processes of marine turtle evidential handling from collection to analysis. Using mock-up exercises to teach how to identify sample types, individual turtles within a confiscation or seizure, and number of samples to collect. Both events were attended by more than 60 law enforcement agencies and over 60 law enforcement officers. The next TRIPOD ShellBank training is scheduled for 23-26 January 2023 in the Philippines.

In 2021, the Asia-Pacific Marine Turtle Genetics Working Group held a series of seven online webinars on the use of genetics for marine turtle conservation. Workshop 6 in the series was titled Illegal Trade, Forensics and ShellBank and provided an opportunity to showcase ShellBank to a broad audience across Asia-Pacific. More than 60 participants from 15 countries.

A second round of workshops was held in 2022 in collaboration with the Secretariat of the Pacific Regional Environment Programme (SPREP), which focused on Western Pacific and hence expanded the membership and network. Workshop 4 in the series was titled Illegal Trade, Forensics and ShellBank and included several presentations showcasing ShellBank to a broad audience across the West Pacific region. More than 60 participants from 15 countries.

Combatting the Global Marine Turtle Tortoiseshell Trade (International Sea Turtle Symposium 2022, Perth)

WWF, in collaboration with SEETurtle hosted a special workshop at the International Sea Turtle Symposium held virtually in February 2022. The workshop offered training sessions on a newly developed app that can recognise fake vs real tortoiseshell from photos (refer SEEShell App) and featured several presentations on ShellBank and how we use DNA samples to determine where illegally traded shells are originating. The workshop also allowed groups to share their latest work and project outcomes, with a forum discussion on the efforts required to reduce the illegal trade collectively.
WHERE TO FROM HERE?

ShellBank with all its offering of genetics databases, capacity building, training and how-to tools is a game-changer to track, monitor and evaluate the global illegal marine turtle trade.

Over the years, ShellBank has developed from an idea to proof-of-concept, to being implemented for the first time through the Surrender Your Shell campaign. ShellBank provides a new programme and toolkit to help coordinate and implement action to address unsustainable use and illegal trade impacts on marine turtle populations.

Aligned to regional and international policy and mandates, and with greater national, regional and international involvement, together we can further ShellBank to:

• Expand the database to include more locations and other marine turtle species;
• Continue to build capacity and expand the network through regional and national workshops and technical training; and
• Advance the science and provide new solutions.

EXPANDING THE DATABASE

While the current Rookery Baseline Database is fast improving and will soon contain several new datasets, there are still significant gaps. Concerted efforts should now focus on extending collaborations to enable increased sampling of hawksbill turtle nesting beaches to expand and improve the Rookery Baseline Database; the In-Water Database of foraging, stranded, and bycatch turtles; and the Confiscation Database of surrendered and confiscated products. The continued growth of these databases will refine geographic stock boundaries and provide useful intelligence about where marine turtle trade is most lucrative, to aid in criminal investigations, and help decipher which populations are being targeted and therefore require further protection. This will make ShellBank fit for purpose as a traceability tool to track marine turtle trade.

The need for a genetic database goes beyond just hawksbill turtles. Many threats and conservation needs that impact hawksbill populations are also needed for other species where the exploiters and unsustainable use and trade remain drivers of turtle population declines. For example, egg collection and harvesting for meat are also impacting other species of marine turtles, in particular green and leatherback turtles, and in some localities olive ridley turtles. As such, future versions of ShellBank will incorporate genetics data from other species, in the first instance green and leatherback turtles with sights set on olive ridley and loggerhead turtles further down the track. Although initially focused on the Asia-Pacific region, ShellBank will be applied in other regions (e.g. the Caribbean and Western Indian Ocean) as of 2023.

Therefore, the aim is to integrate genetic data for all species globally to make ShellBank an invaluable resource for law enforcement and conservation research alike.

CONTINUE TO BUILD CAPACITY

Participation in ShellBank offers a coordinated approach – with standardised tools, databases, guides, capacity building and some funding (in priority locations and as advised by the IPHGWG). It also offers support and data to help deliver on national, regional and international commitments (e.g. CITES, the CMS, The Coral Triangle Initiative on Coral Reefs, Fisheries and Food Security (CTI-CFF)), and the IOSEA MOU, as well as enhancing each country’s enforcement efforts against illegal traders, and highlighting responsibilities to recover threatened marine turtle populations for people and nature. We will continue to build in-country capacity for genetic sample collection and analysis by conducting more regional and/or national workshops and providing expert advice through technical training. This support will continue to be given over the coming years to help advance the knowledge of marine turtle genetic structure and connectivity in support of effective conservation management and law enforcement action.
As we head into the next phase of ShellBank we have a clear vision for its refinement, use and uptake as one of the only traceability tools to track the illegal marine turtle trade. And it couldn’t have come at a better time with mounting evidence that unsustainable use and illegal trade is more widespread, likely dampening several marine turtle populations’ recovery.

ShellBank is a programme and toolkit fit for purpose, aiding both conservation research and law enforcement at a national, regional and international scale. Starting with hawksbill turtles, through Cracking the Code we learnt that we can effectively extract DNA from tortoiseshell products and sequence high quality long fragments of mtDNA to match the methodology long used for sampling wild populations. This gave us the confidence we were onto something worthwhile. Through Surrender Your Shell we learned that ShellBank could be put into practice, with some tweaking of methods and the development of logistical and operational protocols. Together, the results of Cracking the Code and Surrender Your Shell highlighted the benefits of implementing ShellBank as a traceability tool to other marine turtles impacted by trade, across the Asia-Pacific region and beyond. And this is now our priority goal over the coming years.

Collaborations and building networks have been, and will continue to be, at the core of ShellBank. We strongly believe in building capacity, particularly in-country capacity to support and empower local researchers and law enforcers to use genetics as a common identification and population origin tool. Only together are we able to increase sampling of marine turtles to fill the gaps, expand and improve the Rookery Baseline Database of nesting turtles; the In-Water Database of foraging, stranded and bycatch turtles; and the Confiscation Database of surrendered and confiscated products. Continued growth of these databases is the backbone of ShellBank, as it will refine geographic stock boundaries and provide useful intelligence to aid in criminal investigations, and help decipher which populations are being targeted and therefore require further protection.

From the first four years of ShellBank, we take with us many lessons learnt and a much clearer idea of what needs to be done to further develop ShellBank into an invaluable resource for law enforcement and the research community to guide effective protection of these endangered species.
APPENDIX 1: REGIONAL AND COUNTRY SUMMARIES

A country-by-country summary is provided for hawksbill turtles only in the Southeast Asian and Western Pacific Ocean region below, and are only provided for higher density hawksbill populations, those where genetic sampling is underway, and/or those implicated in illegal trade.

Future annual reports will showcase additional countries as partnerships grow. Regional overviews are provided for the remaining global regions. Due to the lack of quantified nesting census data for most populations and major information gaps, maps of nesting distribution are based on locations where hawksbill nesting has been recorded in the past. Therefore, these maps may not accurately represent nesting abundance nor confirmed nesting in the present day and are not to scale (refer Appendix 2 of data used to create spatial maps and country summaries).

In short, in Southeast Asia and Western Pacific Ocean Region many genetic gaps exist. Most high density or illegally traded countries have a level of protection afforded to hawksbill turtles but most are still threatened by unsustainable use and trade. Whilst there are a number of population statuses that remain unknown, turtle populations in demand countries (e.g. Viet Nam and Japan) are considered depleted. In the countries assessed there are only seven genetic stocks assigned. However, through working groups and collaborations more than 650 rookery samples have been collected and are being analysed. Nonetheless, many gaps still remain, highlighting the need to continue to sample and strengthen the mtDNA database for both nesting and in-water studies through focused regional efforts.

For both the Central and East Pacific Ocean, and Atlantic Ocean Region and the Caribbean Regions, no major genetic gaps exist. Where the Central and West Indian Ocean is recognised as an important region for hawksbill turtles, several genetic sampling gaps remain, particularly across smaller rookeries in the Southwest Indian Ocean. Several genetic studies are underway to better assess stock boundaries and connectivity between nesting and foraging areas.
SOUTHEAST ASIA AND WESTERN PACIFIC OCEAN REGION

Hawksbill turtles have been recorded nesting and foraging across the region (Figure 8). Generally, nesting is scattered and at low density (except for the Arnavons in the Solomon Islands), and rookery size estimates are lacking for most populations. Data on annual trends in hawksbill nesting abundance and distribution is also lacking for most Asia-Pacific countries. In the Pacific Ocean, a total of 4,800 nesting females were estimated to be remaining in 2008 (75% lower than historical levels) and 2,100 nesting females in the Indian Ocean (at least 92% lower than historical levels) (Mortimer and Donnelly 2008). Current efforts are underway by several organisations to assess the trends in annual nesting patterns and extinction risk of hawksbill populations across the region (e.g. SPREP).

Countries with known higher density nesting or foraging of hawksbill turtles, and/or implicated in illegal trade in the region include Australia, Fiji, Indonesia, Japan, Malaysia, Papua New Guinea, Philippines, Singapore, Solomon Islands, Thailand, Timor-Leste, Vanuatu, and Viet Nam.

Minor nesting or unquantified foraging has been reported for American Samoa, Cambodia, Cook Islands, Federated States of Micronesia, Kiribati, Brunei, Marshall Islands, New Caledonia, New Zealand, Niue, Palau, Samoa, South Korea, Taiwan, Tonga, and Tuvalu.

A total of 6,900 nesting females are estimated to be remaining in the Pacific and Indian Oceans as of 2008, 75% lower than historical levels in the Pacific and 92% in the Indian Ocean (Mortimer and Donnelly 2008).

Figure 8: Hawksbill turtle nesting distribution and abundance across Southeast Asia and Western Pacific (map generated from TurtleNet, https://apps.information.qld.gov.au/TurtleDistribution/)

© Veronica Joseph / WWF-Australia
Marine turtle species:

Genetic stocks/Management Units: 3

RMU: Southeast Indian Ocean and Southwest Pacific
Population status: Western Australia MU (likely stable or increasing); Northeast Queensland MU (decreasing); Northeast Arnhemland MU (unknown)
National legal status: Vulnerable (EPBC Act*)
ShellBank database (published):
Rookery samples: 182 samples/4 locations
In-Water samples: 92 samples/1 locations
Confiscation: 75 items
Ongoing genetics: Yes, refer Gaps
Use and trade summary:

Status of genetic work
Genetic stocks/Management Units – Three genetically distinct Management Units are identified for Australia. Northeast Queensland (Milman Island), Northeast Arnhemland (Truanti) and Western Australia (Varanus and Rosemary Islands) (Vargas et al., 2016). The Northeast Queensland and Northeast Arnhemland MUs are genetically indistinguishable, but are considered as separate MUs for management purposes due to differences in nesting phenology (summer and winter nesting) (Vargas et al., 2016).

In-Water - Only one genetic study has been carried out at a single hawksbill foraging area on the Great Barrier Reef (the Howick Group) (Bell and Jensen, 2018). Mixed stock analysis and tagging results show that most turtles at this foraging (83%) originate from nesting beaches in the Bismarck Solomon Sea region and Northeast Queensland rookeries (17%). However, these results are based on an incomplete baseline and should be reassessed once a complete baseline is available.

Gaps
While main rookeries have been genetically characterised, there are still gaps in the sampling of important rookeries throughout the Torres Strait. For Western Australia, low-density nesting has not been characterised by turtles nesting along the coast of Ningaloo and in the Kimberley. Work is underway to characterise hawksbill nesting at Ashmore Reef and the Torres Strait (N FitzSimmons, pers comm). There are no known or planned studies in the Northern Territory which continues to be a significant gap given its closeness to the Arafura and Timor Seas. There is a lack of foraging studies for hawksbills in Australia. However, genetic studies of multiple foraging areas are underway (N FitzSimmons, pers comm). Genetic information on rookery stock structure and foraging areas is expected to increase in the coming years.

Summary
Hawksbill turtle nesting is well documented across northern Australia, with key nesting sites in Northeast Queensland, Northern Territory and Western Australia (Limpus, 2009). Long-term monitoring at Milman Island shows this population is declining (Bell et al., 2020), while the rookeries in Western Australia are large and stable (Hamann et al., 2022). There are no long-term population estimates for Northern Territory; however, the island group off Groote Eylandt was recommended as a possible index beach for the long-term monitoring of the Northeast Arnhem Land stock (Hooimeijer et al., 2018).

Hawksbills are known to forage across the region, and limited genetic and tagging results show that turtles from neighbouring countries forage in Australia (Hamilton et al., 2021). Recent satellite tracking studies reveal the remaining Northeast Queensland stock does not migrate beyond Australia’s continental shelf (Bell et al., 2021; Madden Hof et al., Submitted). Similarly, hawksbills tracked from six rookeries in Western Australia show that turtles remained in WA waters post nesting. In addition, two turtles tracked from Timor-Leste both migrated to foraging grounds in Western Australia (Fossette et al., 2021).

Turtle use and trade
Although the Northern Territory, Queensland and Torres Strait populations were historically harvested for the commercial tortoiseshell trade in significant numbers substantially depleting the stocks (Limpus, 2009), there are reports of an ongoing substantial international harvest of hawksbill turtles for the black market tortoiseshell trade in the broader region that is likely to be a major source of mortality for the Northeast Arnhemland stock (Limpus and Miller, 2008). Due to the likely restricted movement of the Northeast Queensland stock within Australian waters, a review is underway as to the likely threats dampening population recovery (Madden Hof et al., Submitted). The active tortoiseshell trade within Australian waters is likely limited. Most of the tortoiseshell items in Australia are thought to have been brought into the country before the CITES ban (1977). However, confiscation records at Australian border control show that many Australians continue to buy illegal tortoiseshell products while vacationing abroad (Madden Hof et al., 2022).

Harvesting of hawksbills by Indigenous people is legal under the Native Title Act 1993. Today, it is thought the hawksbill turtles are not traditionally harvested by Australian Aboriginal and Torres Strait Island peoples, however, there is a noted preference for hawksbill eggs. The harvest of hawksbill eggs has been historically considered unsustainable for some stocks (Department of the Environment and Energy, the NSW Government and the Queensland Government, 2017; Department of Environment and Science, 2021), yet harvest levels remain unquantified and by large, quotas or equivalent, are self managed by community groups.
Marine turtle species:

American Samoa use foraging areas in Fiji (Madden Hof et al., 2022). Tracking studies have shown that hawksbill turtles nesting in and likely includes hawksbills from neighboring countries. Satellite however, little information exists on distribution and abundance Hawksbills are known to forage in the waters surrounding Fiji; (Madden Hof et al., 2020). In-Water - No genetic work has been published. Genetic stocks/Management Units: TBD

Population status: Unknown National legal status: Protected under Regulation 5 of the Offshore Fisheries Management Regulations, 2014 ShellBank database (published): Rookery samples: 9 samples/1 locations In-Water samples: 0 samples/0 location Confiscation: 0 Ongoing genetics: Yes, refer Gaps Use and trade summary:

Status of genetic work Genetic stocks/Management Units – No genetic work has been published. In-Water - No genetic work has been published. Gaps Current genetic studies are underway to characterize new nesting and foraging sites in Fiji though work led by the University of the South Pacific in collaboration with NOAA and are expected to become available in the near future (P Dutton, pers comm).

Hawksbill distribution Hawksbills are known to forage in the waters surrounding Fiji; however, little information exists on distribution and abundance and likely includes hawksbills from neighboring countries. Satellite tracking studies have shown that hawksbill turtles nesting in American Samoa use foraging areas in Fiji (Madden Hof et al., 2022).

Turtle use and trade National legislation in Fiji imposes a ban on the harvest, sale, possession and transportation of marine turtles, their eggs or any part or product (Madden Hof et al., 2022). The ban applies to the killing, landing, taking, selling or offering or exposing for sale, transporting, dealing in, receiving or possessing any marine turtle species, but an amendment of this legislation is currently underway to allow for permits to be issued to authorize limited cultural harvest by local iTaukei communities (Madden Hof et al., 2022).

Kitolelei et al., (2022) report that parallel management systems for marine turtles exist in Fiji, with both the (unwritten) customary iTaukei rules and the (written) national legislation determining the quantity and the time of marine turtle harvest. Marine turtles have been embedded in the iTaukei culture as spiritual deities, totems, myths and chiefly tributes for millennia (Morgan 2007; Kitolelei et al., 2022). However, the sacredness of these animals started to diminish when tortoiseshell trade began in the 1840s (Kitolelei et al., 2022). Tortoiseshell products for sale have been reported as declining but still prevalent in local markets (from 2006-2010; WWF, 2008). Recent surveys confirm the target of hawksbill and green turtles, using fishing nets, spearfishing, and specialised target methods and use in trade (Kitolelei et al.; 2022; WWF-Fiji, In 2019), but quantified numbers still remain unpublished. Where the estimated number of female hawksbill turtles breeding per year is around 20-30 (Madden Hof et al., 2022), there is cause for concern.

Indonesia hosts several globally significant marine turtle populations. Hawksbill turtles have been recorded nesting across the entire country but many populations are depleted and host only low level nesting. Nesting is recorded from several sites in the South China Sea, Aceh Province, West Sumatra Province, Bangka Belitung Islands Province, Bengkulu Province, Banten Province, Java Sea, East Java Province, West Java Province, West and South Sulawesi, North and Central Sulawesi, Southeast Sulawesi. West Kalimantan, East Kalimantan and Sulawesi Sea regions, Bali and Nusa Tenggara Sea regions, Maluku Province, North Maluku Province, West Papua Province, and Papua Provinces (Hammam et al., 2022). There is little information on foraging areas of hawksbills across the region, however, coral reef habitats across Indonesia should provide foraging for hawksbills.

Turtle use and trade Indonesia has a long history of turtle use and trade, and is still widely prevalent across the archipelago today. Although take, use and trade in marine turtles are prohibited, Indonesia continues to play an important role as a source and consumer country, supplying eggs, meat, and processed and unprocessed forms of turtle carapace. Specimens are used domestically and are internationally traded, destined for Malaysia, China, and Viet Nam (CITES Secretariat, 2019). Although the open sale of turtles and their carapace has likely declined over time, possibly due to increased enforcement efforts and media coverage of incidents, reports suggest the trade is now largely underground and significantly shifted to online platforms (for example, 239 online trade advertisements were recorded in the span of a one month survey) (CITES Secretariat, 2019).

Traditional practices continue to be used to capture marine turtles and their eggs, taken by sea or from beaches during nesting season with reports of fishermen sometimes engaging in targeted expeditions, and some harvesters possibly acting as conduits through which meat and eggs are sold more easily (Firlansyah et al., 2017 cited in CITES Secretariat, 2015). Kalimantan remains a hotspot for egg collection alongside Sumatra and Java (the later also reported as a hotspot for the take and trade of meat), whereas Bali remains a hub for live turtle trade with possible lead exporter trade shifts to Makassar in Sulawesi, which retains an active trade in live turtles, turtle meat, eggs, taxidermised specimens, as well as handcrafts (CITES Secretariat, 2019; IOMPA, 2014). Indonesia still appears to be a major source of shells for the illegal international trade (Nahill et al., 2020), notably with trade in tortoiseshell seaweeds reportedly on the rise in East Kalimantan (Profauna, 2016 in Gomez and Krishnasamy, 2019). Several NGOs (e.g. WWF-Indonesia, Turtle Foundation, PROFAUNA Indonesia, Yayasan Penyu Indonesia) are working collaboratively and carrying out campaigns to educate about the plight and trade of hawksbill turtles.

Hawksbill distribution

Hawksbill populations. Hawksbill turtles have been recorded nesting across the entire country but many populations are depleted and host only low level nesting. Nesting is recorded from several sites in the South China Sea, Aceh Province, West Sumatra Province, Bangka Belitung Islands Province, Bengkulu Province, Banten Province, Java Sea, East Java Province, West Java Province, West and South Sulawesi, North and Central Sulawesi, Southeast Sulawesi. West Kalimantan, East Kalimantan and Sulawesi Sea regions, Bali and Nusa Tenggara Sea regions, Maluku Province, North Maluku Province, West Papua Province, and Papua Provinces (Hammam et al., 2022). There is little information on foraging areas of hawksbills across the region, however, coral reef habitats across Indonesia should provide foraging for hawksbills.

Turtle use and trade

Indonesia has a long history of turtle use and trade, and is still widely prevalent across the archipelago today. Although take, use and trade in marine turtles are prohibited, Indonesia continues to play an important role as a source and consumer country, supplying eggs, meat, and processed and unprocessed forms of turtle carapace. Specimens are used domestically and are internationally traded, destined for Malaysia, China, and Viet Nam (CITES Secretariat, 2019). Although the open sale of turtles and their carapace has likely reduced over time, possibly due to increased enforcement efforts and media coverage of incidents, reports suggest the trade is now largely underground and significantly shifted to online platforms (for example, 239 online trade advertisements were recorded in the span of a one month survey) (CITES Secretariat, 2019).

Traditional practices continue to be used to capture marine turtles and their eggs, taken by sea or from beaches during nesting season with reports of fishermen sometimes engaging in targeted expeditions, and some harvesters possibly acting as conduits through which meat and eggs are sold more easily (Firlansyah et al., 2017 cited in CITES Secretariat, 2015). Kalimantan remains a hotspot for egg collection alongside Sumatra and Java (the later also reported as a hotspot for the take and trade of meat), whereas Bali remains a hub for live turtle trade with possible lead exporter trade shifts to Makassar in Sulawesi, which retains an active trade in live turtles, turtle meat, eggs, taxidermised specimens, as well as handcrafts (CITES Secretariat, 2019; IOMPA, 2014). Indonesia still appears to be a major source of shells for the illegal international trade (Nahill et al., 2020), notably with trade in tortoiseshell seaweeds reportedly on the rise in East Kalimantan (Profauna, 2016 in Gomez and Krishnasamy, 2019). Several NGOs (e.g. WWF-Indonesia, Turtle Foundation, PROFAUNA Indonesia, Yayasan Penyu Indonesia) are working collaboratively and carrying out campaigns to educate about the plight and trade of hawksbill turtles.
Genetic stocks/Management Units: 3
RMU: West Pacific and Southeast Asia
Population status: Depleted
National legal status: Protected
ShellBank database (published):
Rookery samples: 6 samples/3 locations
In-Water samples: 44 samples/1 location
Confiscation: 0
Ongoing genetics: Yes, refer Gaps

Use and trade summary:

Status of genetic work
Genetic stocks/Management Units – There is no recent information on the genetic structure of hawksbill rookeries in Japan due to low nesting numbers. Historic genetic information exists from Japan, but low sample size, Okinawa (n=1), Osaki beach (n=2), Arasaki beach (n=3), preclude any stock structure analysis (Okayama et al., 1999). Nishizawa et al., (2012) only reported haplotypes from four samples in Ishigaki-jima.

In-Water - Genetic studies suggest that the foraging hawksbill turtles around the Yaeyama Islands likely comprise individuals from multiple rookeries throughout Southeast Asia and the Western Pacific (Nishizawa et al., 2010); however, a more complete baseline is needed for a robust analysis.

Gaps
Updated sampling and analysis of nesting samples from Japan are needed to assess the genetic stock status of hawksbill turtles nesting in Japan, especially given that they represent the northern limit for the species in this region. Current efforts are underway to collect and analyse hawksbill samples, but given the low number of nesting turtles it may take several years (H Nishizawa, pers comm).

Hawksbill distribution
Hawksbill turtle nesting in Japan is rare and occurs in low numbers. Only ten nests annually have been observed in the Yaeyama Islands, which include nests recorded on the islands of Ishigaki-jima, Kuroshima, Aragusuku-jima, Iriomote-jima, Irabu-jima, Misima-jima, Okinawa-jima, Zamami, Aka-jima, Kumejima, Kakeroma-jima, and Amami-islands (Uenishi and Ishihara, 2021).

Hawksbills are known to forage in Japan and the reefs surrounding the Yaeyama Islands are considered important foraging habitats for hawksbills. Strandings, bycatch and diver observations also show that hawksbills forage as far north as Niigata Prefecture and the Kanto region (Ito and Ishihara, 2021). This is likely the northern limit of hawksbill foraging.

Turtle use and trade
Japan has been a major player in the worldwide trade in tortoiseshell over the past two centuries, with the imports of bekko from Southeast Asia from 1844 to 1992 estimated to equate to nearly nine million individual hawksbill turtles. Japan is reported responsible for up to 80% of the global tortoiseshell trade (Nahill et al., 2020). Since Japan removed its reservation to the CITES marine turtle trade ban in 1994, the domestic trade in tortoiseshell was allowed to continue legally; however, only using stockpiles that existed prior to the cessation of imports, meaning pre-1993 tortoiseshell stocks (Kitade et al., 2021). Even though experts predicted that these stockpiles should have been exhausted by now (Kitade et al., 2021, Nahill et al., 2020), they still exist to date. Serious doubts are cast as to whether the reported stockpile figures are correct, especially seeing that domestic legislation relies primarily on manufacturers self-reporting their stockpile balance and transaction records (Kitade et al., 2021).

Between 2000 and 2008, 11,080 bekko items, including combs, glass frames, jewellery, and traditional ornaments were found for sale in shops visited in Tokyo, Nagasaki, and Okinawa (Nahill et al., 2020). Seizures continued in subsequent years, with Japan customs reporting 164 kg of hawksbill tortoiseshell seized between 2000 and 2019, representing about 350 hawksbill turtles. A 2019 survey by Kitade et al., (2021) of major online auction platforms found more than 8,200 sales of hawksbill products, with a total value of close to US$1 million.
Marine turtle species:

- El Cm Lo De

Genetic stocks/Management Units: 3

- RMU: West Pacific and Southeast Asia
- MU: Sulu Sea (likely decreasing), Western Peninsula Malaysia (stable), Terengganu and Pahang States (putative Gulf of Thailand MU) (stable) [Hamman 2022]

National legal status: Protected in some States

ShellBank database (published):

- Ongoing genetics: Yes, refer Gaps
- Use and trade summary:

Status of genetic work

Rookery stock structure - Malaysia has identified at least three MUs (Nishizawa et al., 2016). Rookeries in Terengganu and Pahang States (e.g. Pulau Redang and Pulau Toman) form a single MU (Gulf of Thailand) putatively with the rookery at Ko Khram in Thailand. Rookeries on the west coast of Peninsular Malaysia in Melaka form a distinct MU, the Western Peninsula Malaysia stock, although they share a common haplotype with rookeries across Peninsular Malaysia.

The rookery at Johor on the southern tip of Peninsular Malaysia has only been assessed using a very small sample size (n=5) but includes two unique haplotypes and should be assessed using a larger sample size. The third genetic site is in the Sulu Seas, with samples only taken from the Sabah Turtle Islands (Pulau Gulisan and Pulau Selingan) (FitchSimmons and Limpos 2014; Nishizawa et al., 2016) noting there are other rookeries in close proximity which remain to be sampled, e.g. in southern Philippines and islands in Indonesian waters of the Sulu Sea (Hamman et al., 2022).

In-Water - Genetic studies have been carried out at four hawksbill foraging areas across Malaysia (Sakaran Marine Park, Pulau Sipadan, Pulau Tiga, and Melaka) (Nishizawa et al., 2016). However, very low sample sizes (2-8 samples) and an incomplete baseline for hawksbills in the region precludes firm conclusions from being drawn at this point.

Gaps

There are a few significant sampling gaps of hawksbill rookeries in Malaysia, including rookeries in Semporna and Johor (currently low sample size). However, hawksbill nesting occurs in low numbers. Genetic sampling of hawksbill nesting (Lankayan and Pompong Island) and foraging areas (Tun Mustapha Park and Semporna) is ongoing (J Joseph, pers comm).

Turtle use and trade

Historically, Malaysia was one of the largest exporters of tortoiseshell to Japan (Nahill et al., 2020). Today, the protection of marine turtles and their derivatives differs within the country, and falls under the jurisdiction of each of the country’s 13 states. In most of Peninsular Malaysia, marine turtle eggs are freely and legally traded in the local markets (CITES Secretariat, 2019). Exceptions are Perlis, Melaka, and leatherback turtle egg trade in Pahang (CITES Secretariat, 2019). In addition, the Terengganu state recently passed an amendment that bans the sale of all turtle eggs in June 2022. In Sabah and Sarawak, marine turtles are listed as totally protected animals, meaning both states ban all trade and consumption of marine turtles and their specimens (CITES Secretariat, 2019). It was found that, because of these differing legislations, there is often confusion regarding what activities are legal, what restrictions exist for legal take, and for whom (CITES Secretariat, 2019).

Even though turtle egg trade is prohibited in Sabah and Sarawak, marine turtles and their eggs are illegally taken from these states and traded with other states in Malaysia, or are imported from or to other countries. Domestic trade seems to focus mainly on turtle meat and eggs for consumption, with most appearing to enter mainly for foreign tourists and eggs catering for locals (CITES Secretariat, 2019). Especially in Sabah, an active local egg demand was found, however, with trade shifting to more underground locations in recent years, and traders adopting coded hand signals to attract potential buyers (CITES Secretariat, 2019).

Illegal trade also occurs with China, the Philippines, Viet Nam, and Indonesia, with Kalimantan highlighted as a hotspot with significant volumes of turtle eggs being exported to East Malaysia (Sabah and Sarawak and IOSRA, 2014 in CITES Secretariat, 2019). The majority of the illegal trade in marine turtles in Malaysia at the international level has been attributed to take by foreign fishing fleets (in most cases Chinese and Vietnamese vessels), which seem to concentrate in the waters off the western coast of Sabah (CITES Secretariat, 2019). Whilst the demand in Malaysia for taxidermied turtles or tortoiseshell products seems to be low, and online trade seems to be conducted largely on an opportunistic basis (CITES Secretariat, 2019), more recent reports suggest online platforms are increasingly used to sell marine turtle products, including hawksbill turtle shell (Hamman et al., 2022).
PAPUA NEW GUINEA

Marine turtle species:

- Hawksbill

Status of genetic work

Genetic stocks/Management Units: TBD

RMU: Southwest Pacific

Population status: Unknown

National legal status: Not protected

Shellbank database (published):

- Rookery samples: 0 samples/0 locations
- In-Water samples: 0 samples/0 locations

Confiscation: 0

Use and trade summary:

- Ongoing genetics: Yes, refer Gaps

Hawksbill distribution

Hawksbill turtle nesting has been recorded in multiple provinces throughout Papua New Guinea, although population densities are unknown. Historic surveys mention East Sepik Province at Labone Island, Mauveli Island, Kairuru Island, Wovulu Island, and Kasiet Island; Manus Province at Pak Island, Los Reys Islands, Harareng Island, Pahwak Island, Bigi Island, and the Nibieu Group of Islands; New Ireland Province in the Boloma Group of Islands, Emira and Mussau Islands, and the Tanga Islands; East New Britain at Nuguria; Madang Province on Kiriwina and south coast and at Long Island; and in Western Province along the whole coast. Recent reports of hawksbill nesting include islands in the Jomard Passage and Conflict Islands groups in Milne Bay Province (Madden Hof et al., 2022). Hawksbills can be found foraging on reefs across PNG but data on distribution and abundance is lacking. There are records of foraging hawksbills at Fishermans Island (Central Province), several locations within Milne Bay Province, including Tagula Island, and Turefore Reef in Western Province, Kavieng in New Ireland Province, and on the northern coast of Papua New Guinea (Kinch 2021; Madden Hof et al., 2022). Juvenile foraging hawksbills have been recorded on the reefs in the Conflict Islands, and samples have been collected for genetic analysis (Madden Hof, unpublished).

Recorded nesting locations

- To be determined MU

Turtle use and trade

Hawksbill turtles are known to nest in low numbers on Panikian Islands (Madden Hof et al., 2022), and the Calamian Islands (Poonian et al., 2016), and the Philippine Turtle Islands (Cruz, 2002). Generally, nesting numbers are very low.

Hawksbill turtles are known to forage on many coral reefs that make up the Philippines archipelago. Hawksbills have been seen feeding at the Calamian Islands, El Nido-Tubbataha Managed Resource Protected Area, Tubbataha Reefs Natural Park, the Turtle Islands Wildlife Sanctuary, Lagoon Gulf, Romboul Island, Manus Bay in Manus Island, and the Davao Gulf (Hamann et al., 2002).

Status of genetic work

Genetic stocks/Management Units: TBD

RMU: West Pacific and Southeast Asia

Population status: Unknown

National legal status: Protected under the Wildlife Resources Conservation and Protection Act, 2001

Shellbank database (published):

- Rookery samples: 0 samples/0 locations
- In-Water samples: 0 samples/0 locations

Confiscation: 0

Use and trade summary:

- Ongoing genetics: Yes, refer Gaps

Marine turtle species:

- Hawksbill

Genetic stocks/Management Units: TBD

RMU: TBD

Population status: TBD

National legal status: TBD

PHILIPPINES

Marine turtle species:

- Hawksbill

Status of genetic work

Genetic stocks/Management Units: TBD

RMU: TBD

Population status: TBD

National legal status: TBD

Shellbank database (published):

- Rookery samples: 0 samples/0 locations
- In-Water samples: 0 samples/0 locations

Confiscation: 0

Use and trade summary:

- Ongoing genetics: TBD

Turtle use and trade

Marine turtles are protected under the country’s Wildlife Resources Conservation and Protection Act of 2001, with trade in marine turtles and their derivatives prohibited. The Philippines established the world’s first transboundary protected area for marine turtles: the Turtle Islands Heritage Protected Area (Ocean Ambassadors, n.d.). However, there are several reports indicating that the country is a major source of hawksbill shells destined for other countries, such as China and Viet Nam, and it appears there is no significant domestic market for these products (Nahill et al., 2020). An unquantified increase in the illegal harvest of marine turtles in several regions was reported by the Philippines in 2019, as well as continued high levels of egg harvesting (见海, 2019 in Ingram et al., 2022). Some cases of turtle meat consumption were also observed. Key hotspots for marine turtle trade are the Balabac Municipality in southern Palawan, and the Turtle Islands Municipality in Tawi-Tawi. In Balabac, turtles have been reported to be stockpiled or chained to rocks underwater until foreign buyers signal interest (Fischer et al., 2021). Marine turtles were said to be foraged for the consumption of their meat and cartilage, or used for jewelry and combs (Antonio and Matillano, 2016). Kudat, Malaysia, was also reported to act as a staging area and transshipment point of marine turtles collected in the waters of the Balabac Strait (Antonio and Matillano, 2016). The Turtle Islands are known as a source for illegally harvested marine turtle eggs mostly exported to Malaysia, with some of these activities orchestrated through an illegal egg harvest permit lottery, others taking place ad-hoc (Fischer et al., 2021). It was also stated that in Calamianes, in the north of Palawan, some opportunistic hunting and egg collection by indigenous communities takes place (Poonian et al., 2016).
SINGAPORE

Marine turtle species:
- Ei, Cm

Genetic stocks/Management Units: TBD

National legal status: Protected

ShellBank database (published):
- Rookery samples: 0 samples/0 locations
- In-Water samples: 0 samples/0 locations

Confiscation: None

Use and trade summary:
- **Recorded nesting locations:**

Status of genetic work
- Genetic stocks/Management Units – No genetic work has been published.
- In-Water - No genetic work has been published.

Gaps
- While very small, turtle populations nesting in Singapore represent a gap. Genetic studies are needed to assess if Singapore represents a single management unit or if these rookeries group with rookeries in Melaka or Johor states (Malaysia), or rookeries in Indonesia.

Hawksbill distribution
- Hawksbill turtles nesting in Singapore is recent and occurs in low numbers (tens of turtle nesting annually). Hawksbills have been recorded nesting along East Coast Parkway sections, Small Sister Island, Big Sister Island, and on Changi (Hamann et al., 2022).

Turtle use and trade
- Marine turtles are protected by national legislation in Singapore, which prohibits the use of turtles or their eggs, with nesting sites monitored and managed by National Parks Board staff recording each clutch of eggs (Hamman et al., 2022). Historically, Singapore has been implicated as a transit and receiver of turtle shell products and eggs (JOSEA, 2014). But turtle smuggling cases seem to be rare, such as in 2015, when a woman was caught by the Singapore customs authority with 60 kilograms of hawksbill turtle shells in her luggage (Nahill et al., 2020; e.g. Straits Times Weekly, 2013). A recent article published that between April and October 2018, 22 cases of smuggled marine turtle eggs meant for personal consumption were detected at checkpoints.

SOLOMON ISLANDS

Marine turtle species:
- Ei, Cm

Genetic stocks/Management Units: 1

RMU: Southwest Pacific

Population status: Likely increasing at the Arnavon Islands (only stock assessed)

National legal status: Protected

ShellBank database (published):
- Rookery samples: 70 samples/1 locations
- In-Water samples: 0 samples/0 locations

Confiscation: Yes, refer Gaps

Use and trade summary:
- **Recorded nesting locations**

Status of genetic work
- Genetic stocks/Management Units – One MU has been identified from the Solomon Islands (Arnavon Islands).
- However, more sampling is needed to assess this stock's geographic boundaries, which may extend into Papua New Guinea.

Foraging areas
- No genetic work has been published.

Gaps
- Published rookery samples from the Solomon Islands are all from the Arnavon Islands. It should be a priority to collect samples from other rookeries within the Solomon Islands as well as from neighboring countries (e.g. Papua New Guinea) to assess the geographic boundary of this MU. Genetic work is underway to analyze additional samples from nesting and foraging hawksbills in the Solomon Islands and Papua New Guinea (N FitzSimmons, R Hamilton, C Madden Hof, pers comm).

Hawksbill distribution
- The main nesting sites of hawksbill turtles in the Solomon Islands are in Arnavon Islands (Big Maleivona Island, small Maleivona Island, Kerihikopa Island, and Sikofo Island) and form the largest nesting population in the region (Hamilton et al., 2015; Prakash and Piovano 2021; Pichler 2021; Madden Hof et al., 2022).
- Hawksbill turtles are known to forage throughout the Solomon Islands. Known foraging areas include Marovo Lagoon in New Georgia and Kolombangara (Prakash and Piovano 2021). Recent satellite telemetry studies show that hawksbill turtles nesting in the Solomon Islands (Arnavon Islands) migrate long distances to foraging areas in Papua New Guinea, New Caledonia, the Torres Strait, and the Great Barrier Reef (Hamilton et al., 2021).

Turtle use and trade
- In the past, the export of tortoiseshell from the Solomon Islands was among the ten highest globally (Millner et al., 2019). The Solomon Islands banned the trade in turtle products in 1993, and only allows turtles to be harvested for subsistence purposes (Vuto et al., 2019), but prohibits the harvesting of turtle eggs or a nesting turtle (Madden Hof et al., 2022). Despite this legislation, marine turtle harvest is common in the country: it was estimated that small-scale fisheries harvest approximately 10,000 turtles per year, while hawksbill turtles comprising 26% of all turtle captures, of which 24% are adult-sized (Vuto et al., 2019 in Madden Hof et al., 2022). Adult turtles are often harvested near or on nesting grounds (Vuto et al., 2019). Over 90% of these turtles were harvested by free-diving spearfishers (Vuto et al., 2019). Other harvesting figures are estimated to range from 5,000-22,000 turtles per year (Pichler, 2021).
- The use of tortoiseshell in jewellery and artwork and the consumption of turtle meat remain a central aspect of contemporary Solomon Islands culture (Nahirli et al., 2020). Hawksbill turtles and eggs are mainly harvested for subsistence purposes, consumed by the family of the fisher that captured the turtles (Vuto et al., 2019). Commercial harvesting and subsistence use have caused some historically important hawksbill nesting beaches to become functionally extinct (Madden Hof et al., 2022). The majority of the shells of the turtles, however, are first sold from local communities to local buyers, who then sell them to Asian buyers or in some cases local buyers are being outcompeted by Asian buyers in Honiara (Vuto et al., 2019 in Madden Hof et al., 2022).
- Fishers indicated the presence of two markets for hawksbill shell in the Solomon Islands: a local market that supplies carvers and shell money makers; and an international market, with hawksbill scutes purchased by Asian buyers before being exported (Nahirli et al., 2020). There were reports of hawksbill scutes being sold to refrigerated ships (Nahirli et al., 2020), and hawksbill jewellery was also observed for sale in the international departures lounge in Honiara, despite the Solomon Islands being a Signatory to CITES (Vuto et al., 2016).
Hawksbill turtles in Thailand have been recorded nesting at Ko Kram. Short migrations to foraging areas within Thailand have also been documented (Hamann et al., 2022). Low numbers of nesting have also been recorded along several islands including Surin and Similan Islands as well as Ko Kra. On the west coast, hawksbills have been recorded foraging in the Gulf of Thailand MU (FitzSimmons and Limpus, 2014). Hawksbill turtles are known to forage in areas such as the waters of Timor-Leste, but abundance and distribution remain unpublished and unquantified. Two nesting female hawksbill turtles satellite-tagged, while nesting in Timor-Leste both migrated to forage on the coast of Western Australia, >1000 km away, highlighting the international connectivity between some nesting and foraging areas (Fossette et al., 2021).

Hawksbill distribution
Hawksbill turtles in Thailand have been recorded nesting at Ko Kram but at relatively low numbers (100 to 150 clutches per year) as well as Ko Kra. On the west coast, hawksbills have been recorded nesting along several islands including Surin and Similan Islands (Hamann et al., 2022). Limited satellite tracking of nesting turtles from Ko Fra and Ko Charn showed short migrations to foraging areas within Thailand (Moomaw, 2022). Hawksbill turtles are likely to forage on coral reefs throughout Thailand.

Status of genetic work
Genetic stocks/Management Units – It is currently unclear if turtles nesting in Thailand belong to a distinct genetic stock (Ko Kram) or if grouped with the NW Peninsular Malaysia rookeries. Hence it is currently grouped with a putative Gulf of Thailand stock (FitzSimmons and Limpus, 2014). Additional sampling is needed to determine the boundary of this stock.

In-Water - No genetic work has been published.

Gaps
Limited genetic information exists from Thailand. However, ongoing efforts are underway through international and local collaborations to sample and analyse nesting and foraging hawksbills from multiple sites in Thailand, as well as turtles used to stock head-starting facilities (S Dunbar, pers comm).

Turtle use and trade
The selling of hawksbill shell products has been strictly outlawed in Thailand by the government (Nahill et al., 2020). It seems that despite local shopkeepers and market sellers widely recognising the ban, there is a minor black market for marine turtle meat and eggs (Nahill et al., 2020). Experts believe it is likely that, based on impacts to other marine turtle species that are nesting in the region, hawksbill populations have equally been impacted by egg harvesting, which have almost certainly caused significant declines in nesting populations (Hamann et al., 2022). It was reported that eggs that were previously sold in bulk in Terengganu were usually sourced from Sabah or imported illegally (via land, air, boat or post) from the Philippines or Thailand, and elsewhere. Moreover, some reports point to Thailand being one of the countries where marine turtle meat is consumed (Ingram et al., 2022). Hawksbill items, in contrast, were not listed among the marine turtle items sold (Nahill et al., 2020), and in a 2018 – 2019 survey of local markets and tourist outlets by Dunbar et al., (2019) along the eastern Gulf of Thailand, they encountered no hawksbill shell, meat, or egg products.

In the 2019 ISEEA National Report, Thailand indicated that its national Fisheries Law prohibits direct harvest and domestic trade in marine turtles, their eggs, parts and products, and protects important turtle habitats, and that the Department of Fisheries has also mechanisms in place to identify international illegal trade routes (ISEEA, 2019). The country also considers international cooperation essential to address poaching and illegal trade in turtle products (ISEEA, 2019). In-Water - No genetic work has been published. Gaps
Timor-Leste represents a significant gap in genetic samples to improve the Rockery Baseline, although nesting numbers are likely to be low. No genetic studies have been conducted on nesting or foraging turtles, but efforts are underway to support sample collection and analysis through WWF-Australia and Conservation International, in collaboration with local partners.

Hawksbill distribution (nesting and foraging)
Hawksbill turtle nesting has been reported at low numbers at Com, Tuttalai–Juco Island, Nino Konis Santana National Park (Maupilrie and Love 1), and Mauve Island (A Amaral, Conservation International, pers comm.). Hawksbill turtles are known to forage in the waters of Timor-Leste, but abundance and distribution remain unpublished and unquantified. Two nesting female hawksbill turtles satellite-tagged, while nesting in Timor-Leste both migrated to forage on the coast of Western Australia, >1000 km away, highlighting the international connectivity between some nesting and foraging areas (Fossette et al., 2021).
Marine turtle species:

VANUATU

Ei Cm Lo Cc Dc

Genetic stocks/Management Units: TBD

RMU: Southwest Pacific

Population status: Likely declining (Madden Hof et al., 2022)

National legal status: Protected

ShellBank database (published):

- **Rookery samples:** 0 samples/0 location
- **In-Water samples:** 0 samples/0 locations

Confiscation: 0

Ongoing genetics: Yes, refer Gaps

Use and trade summary:

Vanuatu use distant foraging areas. For example, one turtle tagged while nesting in Bamboo Bay was recaptured in New South Wales, Australia (Hickey, 2021) and from seven hawksbills satellite tagged after nesting on Moso Island, three were tracked to foraging grounds along the Great Barrier Reef, Australia, three to foraging areas in New Caledonia and one to distant islands within Vanuatu (Rice et al., 2021). However, where turtle take in the past may have amounted to about 1,500 turtles per year, it is suggested that much of this harvest has ceased (Pilcher, 2021). There are limited records of illegal take and trade. It was observed that adult hawksbills are occasionally kept in tanks for tourism purposes and hawksbill turtle hatchlings are caught and retained for headstarting programs on Efate, with high hatchling mortality due to poor water quality (Hickey, 2021). Most turtles caught were reportedly used for consumption, followed by using the meat for trade, and selling the meat (Pilcher, 2021).

Hawksbill distribution

Hawksbill turtles are known to nest throughout Vanuatu. Approximately 300 female hawksbills nest in the country annually (Mortimer and Donnelly, 2008), with the highest density recorded at Moso Island (off north Efate) and Bamboo Bay as well as Wiuwi (West coast Malakula). Extensive but low-level nesting is recorded across the Islands of Ambrym, Efate, Epi, Espiritu Santo, Malakula and Moso, Anietyum and Tegua, Torres Islands (Hickey, 2021). Vanuatu hosts essential foraging habitats for hawksbills. Coral reef habitats across many islands have recorded hawksbill turtles, although none have been quantified (Hickey, 2021). Tagging and satellite telemetry work shows that many hawksbills nesting in Vanuatu use distant foraging areas. For example, one turtle tagged while nesting in Bamboo Bay was recaptured in New South Wales, Australia (Hickey, 2021) and from seven hawksbills satellite tagged after nesting on Moso Island, three were tracked to foraging grounds along the Great Barrier Reef, Australia, three to foraging areas in New Caledonia and one to distant islands within Vanuatu (Rice et al., 2021). However, where turtle take in the past may have amounted to about 1,500 turtles per year, it is suggested that much of this harvest has ceased (Pilcher, 2021). There are limited records of illegal take and trade. It was observed that adult hawksbills are occasionally kept in tanks for tourism purposes and hawksbill turtle hatchlings are caught and retained for headstarting programs on Efate, with high hatchling mortality due to poor water quality (Hickey, 2021). Most turtles caught were reportedly used for consumption, followed by using the meat for trade, and selling the meat (Pilcher, 2021).

Vanuatu use distant foraging areas. For example, one turtle tagged while nesting in Bamboo Bay was recaptured in New South Wales, Australia (Hickey, 2021) and from seven hawksbills satellite tagged after nesting on Moso Island, three were tracked to foraging grounds along the Great Barrier Reef, Australia, three to foraging areas in New Caledonia and one to distant islands within Vanuatu (Rice et al., 2021). However, where turtle take in the past may have amounted to about 1,500 turtles per year, it is suggested that much of this harvest has ceased (Pilcher, 2021). There are limited records of illegal take and trade. It was observed that adult hawksbills are occasionally kept in tanks for tourism purposes and hawksbill turtle hatchlings are caught and retained for headstarting programs on Efate, with high hatchling mortality due to poor water quality (Hickey, 2021). Most turtles caught were reportedly used for consumption, followed by using the meat for trade, and selling the meat (Pilcher, 2021).

Viet Nam

Marine turtle species:

Ei Cm Lo Cc Dc

Genetic stocks/Management Units: TBD

RMU: Western Pacific and Asia-Pacific

Population status: Depleted

National legal status: Protected

ShellBank database (published):

- **Rookery samples:** 0 samples/0 locations
- **In-Water samples:** 0 total samples/0 locations

Confiscation: 0

Ongoing genetics: None

Use and trade summary:

Turtle use and trade

All marine turtle species are prohibited from domestic exploitation under Decree 59 and its related and incorporated documents (CITES Secretariat, 2019). Still, illegal hunting of turtles in the waters of Viet Nam and within the Coral Triangle has been observed at least since the early 2000s, with regular occurrences of fisherpeople caught in this location, who were involved in smuggling marine turtles to Viet Nam (IOSEA, 2014 in CITES Secretariat, 2019; e.g. articles by TRAFFIC in 2004 and National Geographic in 2006). Hunting equipment has evolved from traditional boats and simple fishing gear to large motorised fishing boats and modern equipment, sometimes sponsored by middlemen (CITES Secretariat, 2019). Viet Nam is a source, transit and destination country for marine turtle products. China was indicated as a destination of several shipments originating in Viet Nam, and Viet Nam was implicated as a destination with the origins of turtles mostly reported as Malaysia, followed by Haiti, Indonesia and the Philippines (CITES Secretariat, 2019). Domestic sales in outlets were observed to take place mostly in Nha Trang, Ha Tien, and Ho Chi Minh City, but were also sold in physical markets and online, with most products – beko ornaments, bangles, bracelets and taxidermised turtles – made out of hawksbill, followed by green turtles (CTES Secretariat, 2019; Ingram et al., 2022). Taxidermised turtles are thought to be kept when bottled at house’s basement (CTES Secretariat, 2019). Meat and eggs are domestically consumed as a delicacy and as an aphrodisiac.

In addition to the domestic demand, there is increasing demand from Chinese nationals, who travel to Viet Nam, buying wildlife products including combs and hair clips made of carapace (CITES Secretariat, 2019). Marine turtles are mainly taxidermised in Viet Nam before being exported, whereas prosecuted individuals also claimed to have exported large amounts of processed marine turtles to Chinese wholesalers for local consumption (CITES Secretariat, 2019).
Countries with recorded hawksbill turtle nesting and/or foraging areas include the Comoros (FRA), India, Iran, Kenya, Madagascar, Maldives, Mauritius, Mozambique, Oman, Seychelles, Somalia, South Africa, Sri Lanka, Tanzania, the United Arab Emirates, Yemen, Kuwait, and Pakistan.

Countries with recorded hawksbill nesting and/or foraging areas include the USA, Mexico, Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, Panama, Colombia, Ecuador, and Chile.

Hawksbill distribution

The Central and West Indian Ocean is recognised as an important region for hawksbill turtles (Mortimer and Donnelly, 2008), with nesting occurring across the Indian Ocean, including the Persian Gulf, Red Sea and throughout the Mozambique Channel (Comoros, Madagascar, Mozambique, Tanzania, Kenya, Mauritius and Mayotte) (Hamann et al., 2022). The largest nesting populations are found in the Seychelles and Chagos, accounting for 97% of nesting in the Southwest Indian Ocean (Mortimer et al., 2020).

Recent genetic studies have characterised the genetic structure of major rookeries and foraging areas throughout the Central and Eastern Pacific. No major gaps exist.

Hawksbills are known to nest in the Hawaiian Islands within the Central Pacific and at more than 40 nesting sites in Mexico, El Salvador, Nicaragua, Panama, and Ecuador. The largest rookeries identified to date are located in Bahia de Jalisco and Los Cóbanos (El Salvador), and Pedro Ramos and Aserradores (Nicaragua) (Rguez-Baron et al., 2021).

Hawksbills in the Eastern Pacific primarily inhabit neritic foraging areas in close proximity to their natal rookeries and undergo limited migration compared to hawksbills in other regions. Another unique feature of Eastern Pacific hawksbills is that many foraging aggregations primarily inhabit mangrove estuaries. Important foraging aggregations have been identified at San Jose and Isla Espiritu Santo in Mexico; Los Cóbanos, Jiquilisco Bay and Punta Amapala; and Ecuador (Machalilla and Isla San Cristobal) (Gacós et al., 2016, 2020).

Status of genetic work

Genetic stocks/Management Units – Six MUs have been identified across the Central and Eastern Pacific; Hawaii Island, Mexico Pacific (Costa Careyes, Oaxaca, Guerrero, Jalisco); Nicaragua Pacific (Estero Padre Ramos, Aserradores, Southern Rivas); Costa Rica/Panama Pacific (Osa Peninsula, Ariazo Peninsula), El Salvador (Los Cobanos, Bahía de Jiquilisco, Punta Amapala); and Ecuador (Machalilla and Isla San Cristobal) (Gacós et al., 2016, 2020).

Recent genetic studies have characterised the genetic structure of major rookeries and foraging areas throughout the Central and Eastern Pacific. No major gaps exist.

Hawksbills are known to nest in the Hawaiian Islands within the Central Pacific and at more than 40 nesting sites in Mexico, El Salvador, Nicaragua, Panama, and Ecuador. The largest rookeries identified to date are located in Bahia de Jalisco and Los Cóbanos (El Salvador), and Pedro Ramos and Aserradores (Nicaragua) (Rguez-Baron et al., 2021).

Hawksbills in the Eastern Pacific primarily inhabit neritic foraging areas in close proximity to their natal rookeries and undergo limited migration compared to hawksbills in other regions. Another unique feature of Eastern Pacific hawksbills is that many foraging aggregations primarily inhabit mangrove estuaries. Important foraging aggregations have been identified at San Jose and Isla Espiritu Santo in Mexico; Los Cóbanos, Jiquilisco Bay and Punta Amapala in El Salvador; Gulf of Fonseca in Honduras; Estero Padre Ramos in Nicaragua; Gulf of Nicoya and Sweet Gulf in Costa Rica; Colón Island in Panama; Isla Gorgona in Colombia; Jambeli Archipelago in Ecuador; and the Tumbes sanctuary in Peru (Rguez-Baron et al., 2021).
Atlantic Ocean Region and the Caribbean

Countries with recorded hawksbill turtle nesting and/or foraging areas include the Azores (POR), Portugal, Angola, Benin, Cameroon, Canary Islands (ESP), Cape Verde, Democratic Republic of the Congo, Equatorial Guinea, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Madeira (POR), Mauritania, Morocco, Namibia, Nigeria, Republic of the Congo, Saint Helena, Ascension and Tristan da Cunha (UK), São Tomé and Príncipe, Senegal, Sierra Leone, South Africa, Togo, Argentina, Brazil, Colombia, French Guiana (FRA), Guyana, Suriname, Uruguay, Venezuela, Bahamas, Belize, Bermuda (UK), Costa Rica, Guatemala, Honduras, Mexico, Nicaragua, Panama, Saint Pierre and Miquelon (FRA), United States, Angola (UK), Antigua and Barbuda, Aruba (NED), Barbados, Bonaire, Bahamas, Bonaire, Netherlands Antilles (NED), British Virgin Islands (UK), Cayman Islands (UK), Cuba, Curaçao (NED), Dominica, Dominican Republic, Guadeloupe (FRA), Grenada, Haiti, Jamaica, Martinique (FRA), Montserrat (UK), Saba (NED), Puerto Rico (USA), Saint Barthelemy (FRA), Saint Kitts and Nevis, Saint Lucia, Sint Maarten (NED), Saint Martin (FRA), Saint Vincent and the Grenadines, Sint Eustatius (NED), Trinidad and Tobago, Turks and Caicos Islands (UK), and United States Virgin Islands (USA).

Summary

Status of genetic work

Genetic stocks/Management Units – Hawksbill rookeries in the Atlantic are some of the best studied with multiple genetic studies having been published characterising the genetic structure of hawksbills. At least 20 MU have been identified for the Atlantic (Arantes et al., 2020)

Gaps

No apparent major gaps in sampling across the Atlantic but numerous ongoing genetic studies continue to build knowledge.

Hawksbill distribution

Hawksbill turtles have been reported to nest extensively across the wider Caribbean region. These include 23 major nesting sites (>20 nests/yr AND >10 nests/km²/yr) located in Bonaire, Colombia, Cuba, Guadeloupe, Mexico, St. Eustatius, St. Lucia, and St. Martin. In addition, 88 minor sites are found throughout the region. In the Southeast Atlantic, hawksbills have only been recorded nesting in Brazil, with the main rookeries located in the northeast of Bahia state and Rio Grande do Norte. In the Southeast Atlantic, hawksbills nest along the coast of Cameroon, Equatorial Guinea, Gabon, Gambia, Guinea-Bissau, Liberia, Sao Tome and Principe, and Sierra Leone.

Appendix 2: Marine Turtle Datasets

(Distribution, Trend, Threats and Conservation)

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Turtle Breeding and Migration Atlas - TurtleNet</td>
<td>TurtleNet was developed by the Queensland Government and CMS. It is an interactive map and database of marine turtle biogeography. The database contains data on nesting and foraging distribution and abundance by species based on tagging and nesting census studies and migration between breeding and foraging areas based on flipper tag data, and breeding migration based on satellite telemetry.</td>
<td>https://apps.information.qld.gov.au/TurtleDistribution/</td>
</tr>
<tr>
<td>SWOT Online Map and Sea Turtle Database</td>
<td>Interactive map and database of marine turtle biogeography. The database contains thousands of data records on marine turtle nesting data, satellite telemetry data, species distributions, Regional Management Unit boundaries, genetic data (mtDNA and nDNA), and more.</td>
<td>https://www.seaturtlestatus.org/online-map-data</td>
</tr>
<tr>
<td>TREGS Database - Turtle Research and Monitoring Database System</td>
<td>The Turtle Research and Monitoring Database System (TREGS) provides invaluable information for Pacific Island countries and territories to manage their marine turtle data resources. TREGS can be used to collate data from strandings, tagging, nesting, emergence, and beach surveys as well as other biological data on marine turtles.</td>
<td>https://www.sprep.org/thetreds</td>
</tr>
<tr>
<td>Assessment of the conservation status of the hawksbill turtle in the Indian ocean and south-east asia region</td>
<td>Assessment of the conservation status of hawksbill turtles throughout the IOSEA Region. The report provides information on the ecological range and geographic spread of nesting and foraging sites, threats to hawksbill turtle populations, management and governance actions, and biological data for breeding and foraging populations.</td>
<td>Hamann et al., 2022 (https://www.cms.int/iosea-turtles/en/publication/assessment-conservation-status-hawksbill-turtle-indian-ocean-and-south-east-asia-region)</td>
</tr>
<tr>
<td>IUCN-SSC MTSG - REGIONAL REPORTS</td>
<td>Regional reports are annual publications from the Marine Turtle Specialist Group summarising published and unpublished data for every country and region in which marine turtles occur. Yearly Regional Reports can be viewed and downloaded from the site.</td>
<td>https://www.iucn-ssc.org/regional-reports</td>
</tr>
<tr>
<td>Assessment of the Conservation Status of the Hawksbill Turtle in the Western Pacific Ocean Regions</td>
<td>Assessment of the conservation status of hawksbill turtles throughout the Western Pacific Region. The report provides information on the ecological range and geographic spread of nesting and foraging sites, threats to hawksbill turtle populations, management and governance actions, and biological data for breeding and foraging populations.</td>
<td>Hof et al., 2022 (https://www.cms.int/en/document/assessment-conservation-status-hawksbill-turtle-western-pacific-ocean-region)</td>
</tr>
</tbody>
</table>
Appendix 3. Hawksbill Turtle Genetic Stocks/Management Units

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Locations</th>
<th>RMU</th>
<th>Citation/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>Doce Aguas NW Atlantic</td>
<td>LeRoux et al., 2012; Diaz-Fernandez et al., 1999; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Puerto Rico and Dominican Republic</td>
<td>Mona Is. (and Monito Is.), Saona Is. NW Atlantic</td>
<td>LeRoux et al., 2012; Arantes et al., 2020; Carreras et al., 2013</td>
<td>Velez-Zuazo et al., 2008; LeRoux et al., 2012; Arantes et al., 2020; Carreras et al., 2013</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Jaragua National Park NW Atlantic</td>
<td>Arantes et al., 2020; Carreras et al., 2013</td>
<td></td>
</tr>
<tr>
<td>USVI/BWI</td>
<td>Barbados, Windward (Bath) NW Atlantic</td>
<td>Browne et al., 2010; Arantes et al., 2020; LeRoux et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Barbados-Leeward</td>
<td>Barbados, Leeward NW Atlantic</td>
<td>Browne et al., 2010; Arantes et al., 2020; LeRoux et al., 2012</td>
<td></td>
</tr>
<tr>
<td>USVIB/BWI</td>
<td>Buck Island NW Atlantic</td>
<td>LeRoux et al., 2012; Hill et al., 2018; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>USVISP/TOBSW/TOBNE/COL</td>
<td>Sandy Point, Cabo de la Vela, South West coast, North East coast NW Atlantic</td>
<td>Cazabon-Mannette et al., 2016; Arantes et al., 2020; Levasseur et al., 2019; Hill et al., 2018; LeRoux et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Antigua</td>
<td>Antigua NW Atlantic</td>
<td>Levasseur et al., 2019; Arantes et al., 2020; LeRoux et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Barbuda</td>
<td>Barbuda (North, South) NW Atlantic</td>
<td>Levasseur et al., 2019; Arantes et al., 2020; LeRoux et al., 2012</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Tortuguero NW Atlantic</td>
<td>LeRoux et al., 2012; Arantes et al., 2020; Lavasseur et al., 2019</td>
<td></td>
</tr>
<tr>
<td>Guadeloupe</td>
<td>Trois Ilets, Marie Galante, Galet Rouges, Basse-Terre NW Atlantic</td>
<td>LeRoux et al., 2012; Arantes et al., 2020; Lavasseur et al., 2019</td>
<td></td>
</tr>
<tr>
<td>North Yucatan Peninsula</td>
<td>Holbox NW Atlantic</td>
<td>LeRoux et al., 2012; Arantes et al., 2020; Labastida-Estrada et al., 2019; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Campeche</td>
<td>Chenkén NW Atlantic</td>
<td>Labastida-Estrada et al., 2019; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>North Yucatan Peninsula</td>
<td>El Cuyo, Las Coloradas NW Atlantic</td>
<td>Labastida-Estrada et al., 2019; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Nicaragua-Atlantic</td>
<td>Pearl Cays NW Atlantic</td>
<td>LeRoux et al., 2012; Arantes et al., 2020; Lavasseur et al., 2019</td>
<td></td>
</tr>
<tr>
<td>Northern Brazil</td>
<td>Pipa, Fortaleza SW Atlantic</td>
<td>Vilaça et al., 2013; LeRoux et al., 2012; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Southern Brazil</td>
<td>Bahia, Pirambo SW Atlantic</td>
<td>Vilaça et al., 2013; LeRoux et al., 2012; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>Los Roques NW Atlantic</td>
<td>Bowen et al., 2007; Monzon et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>Belize NW Atlantic</td>
<td>Bass et al., 1996; Monzon et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Principe Island</td>
<td>Praia Grande, Praia Ribeira Izé, Praia Sôca, Ponta Marmita, Praia Bom-Bom SW Atlantic</td>
<td>Monzon et al., 2011</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Locations</th>
<th>RMU</th>
<th>Citation/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Ocean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northwest Iran</td>
<td>Nakhtilo, Oommolkaram NW Indian Ocean</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Southwest Iran</td>
<td>Sheedvar, Hendourabi NW Indian Ocean</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>Saudi Arabia NW Indian Ocean</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Western Australia</td>
<td>Rosemary Islands, Vanarun Islands SE Indian Ocean</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td>SW Indian Ocean</td>
</tr>
<tr>
<td>Western/Central Indian Ocean</td>
<td>Amirantes Is., Platte Is., Graniticia Is., Chagos Archipelago, Aldabra</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Locations</th>
<th>RMU</th>
<th>Citation/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southeast Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peninsular Malaysia</td>
<td>Pulau Redang, Melaka, Geliga SE Asia/West Pacific</td>
<td>Vargas et al., 2016; Arantes et al., 2020; Nishizawa et al., 2016</td>
<td></td>
</tr>
<tr>
<td>Sabah Turtle Islands</td>
<td>Redang Island, Melaka SE Asia/West Pacific</td>
<td>Vargas et al., 2016; Arantes et al., 2020; Nishizawa et al., 2016</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Locations</th>
<th>RMU</th>
<th>Citation/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Pacific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solomon Islands</td>
<td>Arnavon Islands SW Pacific</td>
<td>Vargas et al., 2016; Arantes et al., 2020; LaCasella et al., 2020</td>
<td></td>
</tr>
<tr>
<td>NE Arnhemland</td>
<td>Northeast Arnhem Land SW Pacific</td>
<td>Vargas et al., 2016; Arantes et al., 2020</td>
<td></td>
</tr>
<tr>
<td>NE Queensland</td>
<td>Milman Island SW Pacific</td>
<td>Vargas et al., 2016; Arantes et al., 2020; LaCasella et al., 2020</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Management Unit</th>
<th>Locations</th>
<th>RMU</th>
<th>Citation/Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central and Eastern Pacific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaii</td>
<td>Hawaii Islands SW Pacific</td>
<td>Gaos et al., 2020</td>
<td></td>
</tr>
<tr>
<td>Pacific Mexico</td>
<td>Costa Careyes, Oaxaca, Guerrero, Jalisco East Pacific</td>
<td>Gaos et al., 2016; Zuñiga-Marroquin and Monteros, 2017</td>
<td></td>
</tr>
<tr>
<td>Nicaragua</td>
<td>Estero Padre Ramos, Aseradores, Southern Rivas East Pacific</td>
<td>Gaos et al., 2016</td>
<td></td>
</tr>
<tr>
<td>Costa Rica-Panama Pacific</td>
<td>Osa Peninsula, Azuero Peninsula East Pacific</td>
<td>Gaos et al., 2016</td>
<td></td>
</tr>
<tr>
<td>El Salvador</td>
<td>Los Cobanos, Bahia de Jiquilisco, Punta Amapala East Pacific</td>
<td>Gaos et al., 2016</td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>Machalilla, Isla San Cristobal East Pacific</td>
<td>Gaos et al., 2016</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

OUR MISSION IS TO
CONSERVE NATURE AND
REDUCE THE MOST PRESSING
THREATS TO THE DIVERSITY
OF LIFE ON EARTH.